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Abstract. According to the environmental bulletin in recent years, PM2.5 has been 

one of the primary pollutants of air pollution in China. And researches about PM2.5 

in source analysis, composition, physical and chemical properties, prediction and 
other aspects have been studied. In order to better figure out the current research 

status of PM2.5 in China, this paper analyzes these related studies from the 

qualitative and quantitative aspects. From the qualitative aspect, the paper analyzes 
the composition and source of PM2.5. From the quantitative aspect, the paper 

describes the prediction method of PM2.5 concentration from two aspects, one is 

based on ground observation stations, the other is based on satellite data. Whether 
from a qualitative or quantitative perspective, the research on PM2.5 is still very 

necessary. The control of air pollution has a long way to go, and continuous 

research and practice are still required.  
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1. Introduction 

Air pollution prevention and control is an important part of ecological environment 

protection in China, and it has been deepened with the evolution of major environmental 

problems in the process of social and economic development. From the 1970s to the 

early 1990s, total suspended particles (TSP, with a particle size of less than 100 microns) 

were mainly treated. In 1996, PM10 was included in the “Ambient Air Quality Standard 

(GB3095-1996)”. PM2.5 was included in the new version of “Ambient Air Quality 

Standards (GB3095-2012)” until 2012. At present, China has done a lot of work in air 

pollution control and air quality management and achieved remarkable results, as shown 

in Figure 1, the proportion of PM2.5 as the main pollutant is continuously decreasing. 

But the pollution situation is still severe, and heavy pollution and serious pollution still 

occur. PM2.5 is harmful to human health [1-3], so it has always been the focus of the 

public and become one of the hot issues of the society. This paper will discuss the 

existing research about PM2.5 in China from both qualitative and quantitative 

perspectives. 
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Figure 1. The proportion of PM2.5 as the main pollutant. 

2. Composition of PM2.5 

2.1. Water-Soluble Ions 

Water-soluble ions are an important component of PM2.5, including SO4
2-, NO3

- and 

NH4
+, in addition to a small amount of Cl-, K+, Mg2+, Ca2+, F-, NO2

- and other 

components [4-8]. NH4
+, NO3

-, SO4
2- (called SNA) are the most important inorganic 

water-soluble ions in fine particles, SNA are a secondary pollutant generated from 

gaseous precursors SO2, NOx and NH3 through homogeneous or heterogeneous 

reactions, and usually exist in the form of (NH4)2SO4, NH4HSO4, H2SO4, NH4NO3 in the 

atmosphere [6]. These soluble components generally account for 20% to 50% of the 

mass of PM2.5. NH4
+ mainly comes from the transformation of NH3 produced in animal 

husbandry, agricultural fertilization and the degradation of organic matter. The 

formation of SO4
2- is due to the burning of fossil fuels, which is higher in winter and 

lower in summer. NO3
- comes from the conversion of its gaseous precursor nitrogen 

oxides. The nitrogen oxides in cities mainly comes from the emissions of motor vehicles, 

but industrial emissions, agricultural fertilizers also will cause the increase of NO3
- [4, 

9]. 

2.2. Carbon-Containing Components 

Carbon-containing components are another important chemical component of PM2.5, 

accounting for 20-60% of the PM2.5 [10], which have an impact on atmospheric 

visibility [11], earth’s Radiation Balance, and human health [12]. Carbon-containing 

components include organic carbon (OC), elemental carbon (EC), and carbonate carbon 

(CC). OC also contains a large amount of organic matter, such as aliphatic compounds, 

aromatic compounds, and organic acids. EC is also not elemental carbon in the simple 

sense, but a complex mixture, including pure carbon, graphitic carbon and other black 

non-volatile organic substances (such as tar, coke). CC includes sodium carbonate, 

potassium carbonate, magnesium carbonate and calcium carbonate and so on, which are 

ignored because of small content in PM2.5. The carbon components of PM2.5 mainly 

are from coal combustion, motor vehicle exhaust emissions and biomass combustion. 
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2.3. Inorganic Components 

There are also a variety of metal elements and non-metal elements in PM2.5, containing 

Sodium (Na), Magnesium (Mg), Aluminum (Al), Copper (Cu), Sulfur (S), Boron (P), 

Chlorine (Cl), Potassium (K), Calcium (Ca), Nickel (Ni), Bromine (Br), Manganese 

(Mn), Zinc (Zn), Lead (Pb), Cadmium (Cd), Chromium (Cr), Antimony (Sb) and other 

nearly 40 species [13-17]. These elements are all primary particles, which are divided 

into natural sources (wind sand and volcanic eruptions) and anthropogenic sources. 

Metal elements contribute very little to the mass of PM2.5, usually less than 1% [18, 19]. 

Studies have shown that they not only have significant effects on particulate matter 

redox activity and oxidation potential [20, 21], but are also closely related to morbidity 

and mortality [22, 23]. 

3. Source Analysis of PM2.5 

3.1. Source Analysis of PM2.5 Based on Air Quality Model 

� Industrial emission. Metallurgy, building materials, petrochemicals and other 

key industries are the focus of regional industrial pollution prevention and 

control. The primary pollutant emissions of PM2.5 from industrial sources 

accounted for 60% of the total regional emissions. The primary emissions of 

PM2.5 in several key industries of iron and steel, coking, cement, glass and 

petrochemical accounted for 50% of the total emissions from industrial sources. 

During the heating period from 2016 to 2017, the contribution of industrial 

sources to PM2.5 was 25.3%-35.7% [24]. 

� The usage of bulk coal for heating fuel. In recent years, the conversion of 

coal to gas and coal to electricity has reduced the amount of scattered coal used, 

which directly affects the emission of air pollutants, especially SO2 and 

primary PM2.5. Preliminary estimations show that in 2017 and 2018, the 

primary PM2.5 emission reductions are 23% and 34% under the measure. 

Moreover, the pollutant emission per unit of coal combustion is more than 15 

times that of the power plant. 

� Mobile source pollution. The number of mobile sources in China is numerous. 

From 2013 to 2018, car ownership increased by about 75 million. From 2009 

to 2018, the number of motor vehicles in Beijing increased from 4.019 million 

to 6.084 million. Source analysis of fine particulate matter in Beijing’s 

atmosphere in 2016 showed that the contribution rate of motor vehicle 

emissions reached 37.6% [25]; the source analysis results in 2018 showed that 

local emissions contributed 2/3, of which mobile sources accounted for 45% of 

local emissions. According to the latest source analysis results in 2020, local 

emissions are 60%, and mobile sources account for 46% of these 60%.  

� Dust. Dust sources are divided into four categories: road dust, construction 

dust, soil dust and yard dust. Roads and construction are the main sources of 

fugitive dust in cities, and they can account for more than 80% of total fugitive 

dust emissions. The source analysis results of urban particulate matter for 
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many years also show that although fugitive dust has been controlled to a 

certain extent, its contribution to PM2.5 concentration is still 15%-25%. 

� Catering fume. The compositions of catering fumes are complex, including 

polycyclic aromatic hydrocarbons (PAHs), benzopyrenes, aldehydes and 

ketones, benzene series, heterocyclic amines and other harmful components. 

Studies have shown that most of the soot particulate matter emitted by catering 

is fine particulate matter. Taking the street as a unit, it is calculated that the 

PM2.5 emission intensity is 0.47 t/km-1.42 t/km2 [26]. The latest analysis of 

PM2.5 sources released by Beijing in 2018 shows that catering sources 

contributed about 4%, while Guangzhou was about 6%. 

3.2. Source Analysis of PM2.5 Based on Backward Trajectory Model 

The characteristics of regional pollution are obviously one of the main characteristics of 

air pollution in China. The regional pollution is spatially manifested as the regional 

distribution of major cities with excessive pollution, and temporally manifested as the 

regional synchronization of heavy pollution processes. Cross-regional transportation is 

affected by terrain, meteorology and other conditions, and the transportation distance 

scales are different, ranging from within 100 meters to regional, countries. 

Backward trajectory models are often used to identify possible external sources of 

particulate matter. In addition, methods such as Potential Source Contribution Factor 

(PSCF) and Concentration Weighted Trajectory (CWT) [27, 28] are used to identify 

potential sources. Li [29] used TrajStat and combined global data assimilation data to 

study the potential source areas that affected the concentration of particulate matter in 

Beijing from 2005 to 2016. In 2017, the regional transmission in Beijing accounted for 

1/3, and the regional transmission contributed more than 50% when heavy pollution 

occurred; in 2020, the regional transmission accounted for 40%, mainly the southeast 

and southwest transmission channels. When heavy pollution occurs, the proportion of 

regional transmission is 64%. Figure 2 are results of the backward trajectory clustering, 

PSCF and CWT in Zhengzhou [30]. 

4. Quantitative Analysis of PM2.5 

4.1. Prediction of PM2.5 

There are two types of PM2.5 prediction models in Table 1: Mechanism models and 

Non-mechanism models. Mechanism models are mainly numerical prediction models 

[31]. Numerical models use various meteorological data and emission source data to 

simulate the formation of pollutants through the diffusion of atmospheric pollutants and 

the physical and chemical processes of substances, such as CAMQ [32], WRF-Chem 

[33], NAQPMS [34] etcetera. However, it is necessary to establish a relatively complete 

emission source inventory, meteorological field, and related models of physical and 

chemical changes involved in the process of pollutant diffusion. 

Non-mechanical models include statistical models and machine learning models. 

Statistical models commonly used include multiple linear regression model [35], gray 

prediction model GM [36], ARIMA model [37]. With the development of machine 

learning, many scholars have also begun to apply machine learning methods to the 
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prediction of PM2.5. We can divide these models into simple model and mixed models. 

Simple models only involve one of machine learning models, such as SVR [38], RF 

[39], BPNN [31], LSTM [40], etc. The mixed models are KNN-LSTM [41], LSTM-

SVR [42], ARIMA-SVR [43], MRMR-HK-SVM [44], PCA-OS-ELM [45], etc. In the 

non-mechanism model, the variables used to predict PM2.5 have the following 

categories: pollutant data from monitoring stations; historical PM2.5 data; 

meteorological data; combination of pollutant data and meteorological factors, and 

maybe add other data such as boundary layer height and visibility. Compared with the 

mechanism model, the non-mechanism model requires relatively less data, does not 

involve the pollutant boundary field and the meteorological boundary field. The forecast 

model is simpler. Compared with statistical models, machine learning is more suitable 

for predicting PM2.5, and it can better deal with nonlinear problems. Because there are 

many factors affecting PM2.5 concentration, linear models may be difficult to describe 

clearly. 

 
(a)                                                                   (b) 

 
(c) 

Figure 2. (a) Backward trajectory clustering; (b) PSCF; (c) CWT. 

4.2. Estimation of PM2.5 Concentration Based on Remote Sensing Data 

Aerosols are composed particles of solid and liquid particles suspended in the 

atmosphere. Many scholars have begun to use satellite data to discuss the estimation of 

atmospheric particulate matter concentration, which provide new ideas for the 

prevention and control of air pollution. Lots of studies have shown that there is a certain 

correlation between AOD and atmospheric particle concentration [46-48]. In order to 

make up for limitation of spatial distribution of ground-based monitoring stations, the 

estimation of PM2.5 by means of satellite remote sensing technology has become a 

research hotspot. There are four main methods to retrieve ground PM2.5 concentration 
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based on satellite remote sensing AOD data in Table 2: Model scale factor method [49], 

Semi-empirical formula method, Statistical model method and Machine learning 

method [50]. 

Table 1. Comparison between mechanism models and non-mechanism models. 

 Type Advantage Disadvantage 

Mechanism model 
CAMQ; WRF-Chem; 

CAMx; NAQPMS 

Mature technology and 
relatively accurate 

results; suitable for a big 

scale 

 

Low accuracy at 
small scale 

Non-mechanism 

model 

Statistical model GM; ARIMA; GAM 
 
 

Less data required, 

simpler model than 
mechanism model; 

Suitable for small    

regions 

 
 

The complex 

mechanism process 
of PM2.5 

Prediction is 

ignored. 

Machine 
learning 

model 

Simple 

model 
SVR; RF; LSTM; BP 

 

Mixed 
model 

KNN-LSTM; 
LSTM-SVR; 

ARIMA-SVR; 
MRMR-HK-SVM; 

PCA-OS-ELM 

The scale factor method was first proposed by Liu [51]. Liu used the chemical 

transport model of atmospheric pollution (CTM) to simulate the scale factor of AOD 

and PM2.5, and then used the scale factor to multiply the AOD obtained by satellite 

remote sensing. The advantage is that PM2.5 concentration can be simulated and 

calculated to obtain the particulate pollution situation in regions without PM2.5 

monitoring sites. However, the method relies on the results of the model, and its 

parameters need to input accurate source list. Otherwise the accuracy of the model will 

be affected. 

The type and vertical distribution of aerosols affect particle scattering 

characteristics and lead to differences in scattering extinction, but the physical 

mechanism is relatively complex. Therefore, scholars have studied the semi-empirical 

formula for estimating PM2.5 from the characteristics of different aerosol types and 

hygroscopic effects to estimate ground PM2.5 [52-53]. This method takes into account 

the physical mechanism between AOD and PM2.5, and the inversion results are also 

better than the scale factor method [54]. But there are also some shortcomings. The 

relationship between AOD and PM2.5 is very complex and cannot be expressed by a 

complete formula. The parameters in the formula are difficult to obtain under the 

existing conditions, and it is difficult to apply it in practice. 

The statistical model can be divided into simple linear regression and advanced 

statistical models. One is to establish a simple linear regression model between AOD 

and PM2.5 [55]. The second is the advanced statistical model [56-58]. In addition to 

AOT, factors such as meteorological data, boundary layer height and location are added 

to the model. The advanced statistical model not only expands research scope, but also 

improves the accuracy of PM2.5 retrieval from satellite remote sensing, making it more 

widely used. The method requires a large amount of data to support the fitting and 

verification of the model, and the limitation is that it is only used in the area of PM2.5 

monitoring sites. The more factors introduced into the formula, the higher the 

complexity among parameters. On this basis, the expression of nonlinear relationship 

may not be optimal. 

With the development of machine learning, scholars have gradually introduced 

these methods into estimation of PM2.5. There are backward neural network and 

artificial neural network [58], as well as SVM, RF, etc. The precision of them is higher 
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than others. But the results obtained by machine learning methods cannot be 

materialized or explained in mathematical language, and it is currently impossible to 

improve them according to the relevant materialized mechanisms. The “black box” 

nature hinders researchers to understand model results [50]. However, for massive 

samples, self-supervision and training of machine learning have greater advantage, and 

the estimation accuracy is higher. There is no difference between machine learning 

result and statistical models result, but it will appear overfitting phenomenon when the 

number of samples is small. 

Table 2. Comparison of different methods. 

 Advantage Disadvantage 

Scale factor method 
Not rely on ground-based PM2.5 
observation data 

Parameters cannot be updated; low 
precision; high cost 

Semi-empirical method 
Better precision than scale factor 

method 

Part of parameters are difficult to 

obtain 

Statistical 
method 

Simple linear 

regression model 
Simple model 

 

Not consider the influence of the 

physical mechanism between AOD 
and PM2.5 on the estimation accuracy 

Advanced 
Statistical Models 

Higher precision by introducing 
more parameters 

Machine learning method 

Considering the nonlinear 

relationship between model 
parameters; high estimation 

accuracy 

Results cannot be explained in 

materialized mechanisms or 

mathematical language 

5. Conclusions 

This paper mainly expounds the existing research papers on PM2.5 from two 

perspectives qualitative and quantitative. Due to space limitations, the relevant 

elaboration on PM2.5 may not be comprehensive enough. In terms of qualitative aspects, 

the composition, sources and hazards of PM2.5 are expanded. The composition of 

PM2.5 is mainly divided into three categories, water-soluble ions, carbon-containing 

components and inorganic elements. The main sources are industrial emissions, mobile 

sources, fugitive dust, coal use and catering sources. From a quantitative point of view, 

it is mainly in describing the prediction and estimation of PM2.5. The prediction of 

PM2.5 is based on ground monitoring data, and different models are used for prediction; 

the other is based on remote sensing data, which is also estimated using a variety of 

models. Both have their own advantages and disadvantages. The former can make 

accurate predictions on a small scale, but it cannot be applied on a large scale. The latter 

just makes up for this. Qualitative analysis and quantitative analysis are indispensable in 

the research of PM2.5. The two complement each other and provide directions and ideas 

for the governance of PM2.5. 
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