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Abstract. For the comprehensive characteristics of hydro-turbine, it is generally 
grasped through the full characteristic curve map of hydro-turbine obtained from the 

experiment. However, due to the factors such as time cost, fund cost, experimental 

difficulty and safety, the experimental results cannot hold onto each working 
condition of hydro-turbine. And for the specific conditions of unknown working 

conditions, linear interpolation needs to be carried out through the existing 

experimental results, which will have a certain hidden danger to the safe and stable 
operation of the turbine. This paper uses the advantages of neural network to predict 

the overall operation space of hydro-turbine through back-propagation neural 

network under the condition of existing experimental points. The results show that 
the neural network method can effectively ensure the accuracy of the operation 

characteristics of the hydro-turbine, which can guide the safe and stable operation 
of the hydro-turbine more clearly, and ensure the efficient and stable operation of 

the hydro-turbine. 
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1. Introduction 

Tubular turbine is a typical hydropower equipment used for low-head hydro-energy 

utilization [1]. The angle-adjustable guide vane and angle-adjustable runner blade are 

used to achieve desirable performance and good operation stability. The full 

characteristic curve map (FCCM) is usually used for hydropower plants. It describes the 

performance parameters such as head H, flow rate Q, power P and efficiency η in a unit 

form of unit flow rate Q11 and unit rotational speed n11 [2, 3]. Conventional FCCM is 

drawn based on hydrodynamic model test with discrete points and the two-dimensional 

continuous map can be generated by interpolation (see Figure 1). As adjustable blades 

and vanes are used, FCCM becomes very complex with too many parameters [4]. It 
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increases the difficulty of selecting the operating point in actual applications because the 

relationship of these parameters is not fully built.  

 
Figure 1. Conventional FCCM of tubular turbine. 

Neural network is an algorithmic mathematical model that imitates the behavior 

characteristics of animal neural network and carries out distributed parallel information 

processing. This kind of network depends on the complexity of the system, and achieves 

the purpose of processing information by adjusting the interconnected relationship 

between a large number of internal nodes [5]. The advantages of neural network include 

following three main points. Firstly, it has the ability to learn and build models with 

nonlinear and complex relationships, which is very important for tubular turbine because 

the relationship between a large number of inputs and outputs is nonlinear and complex 

[6]. Secondly, neural network can be generalized. After learning from the initialization 

input and its relationship, it can also infer the unknown relationship between the 

unknown data, so that the model can be generalized and predict the unknown data [7, 8]. 

Thirdly, unlike many other prediction techniques, neural network does not impose any 

restrictions on input variables. In addition, many studies have shown that neural network 

can better simulate heteroscedasticity, that is, data with high volatility and unstable 

variance, because it has the ability to learn the hidden relationship in the data without 

imposing any fixed relationship in the data [9]. The back-propagation neural network is 

the most widely used form of neural network. It has the advantages of nonlinear mapping 

ability, self-learning and adaptive ability, generalization ability and fault tolerance ability 

[10, 11]. The disadvantages like local minimization problem and the contradiction 

between prediction ability and training ability does not exist in the tubular turbine case. 

Therefore, this research focuses on the application of the back-propagation neural 

network for building an advanced full characteristic curve of tubular turbine. It is of great 

significance to improve the intelligent optimal operation of the turbine unit. 

2. Basic Characteristics of FCCM and Tubular Turbine 

According to the similarity theory of turbine, the unit flow rate Q11 and unit speed n11 of 

the same series of turbine under similar working conditions are equal respectively, and a 
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certain value of Q11 and n11 determines a similar working condition. Therefore, Q11 and 

n11 can be used as parameter variables to represent the changes of efficiency η and runner 

blade opening a0 and so on of the same series of turbines under different working 

conditions. In the rectangular coordinate system with n11 and Q11 as the ordinate and 

abscissa axes, draw the equivalent efficiency curves η= f (Q11, n11), the equivalent runner 

blade opening curves a0 = f (Q11, n11), and the equivalent guide vane opening curves β= 

f (Q11, n11) for the adjustable-blade turbine. These isolines represent various main 

performances of the same series of turbines, so they are called the full characteristic curve 

map (FCCM) of the turbine. FCCM is generally obtained by the method of test of model 

hydro-turbine. Through the above expression method, the n11 and Q11 are used as 

parameter variables, so that the FCCM of each hydro-turbine are drawn with a unified 

scale, which eliminates the influence caused by the difference of geometric dimensions 

and working conditions of the hydro-turbine, and is convenient to investigate and 

compare the performance of the hydro-turbine. 

In this study, the FCCM obtained from the model test of a tubular turbine is deeply 

analysed, and the influence and correlation of various parameters on the operation 

performance of the turbine in the FCCM are explored and excavated. The tubular turbine 

model in this study is shown in Figure 2 where z is usually used for the rotation axis.  

 
Figure 2. Tubular turbine and its components. 

According to the similarity theory of hydro-turbine, the unit flow rate Q11 represents 

the flow rate through a given runner with a diameter of 1m when working under 1m head, 

and the flow rate through the turbine when working under similar conditions. The 

formula is defined as:  

11 2

QQ
D H

�                                                       (1) 

Where, D represents the diameter of the runner. 

Unit speed n11 refers to the speed that a given runner with a diameter of 1m should 

have when working under 1m head and the turbine with similar geometry and working 

under similar working conditions. Its formula is defined as: 

11

nDn
H

�                                                          (2) 
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3. Pre-processing of the Model’s Input 

According to the FCCM in Figure 1, it can be seen that the selection of unknown working 

conditions in the FCCM in engineering and scientific research still depends on the linear 

interpolation and fitting of nearby known points. However, the flow characteristics of 

fluid and its impact on the energy characteristics of tubular turbine cannot be simply 

reflected by local linear interpolation, it is a complex nonlinear space. In terms of 

technical conditions, a comprehensive coverage of the whole space requires a lot of 

financial and material resources and a long-time test. Therefore, it is necessary to find a 

fast means to accurately reflect the overall picture of the comprehensive characteristic 

space of tubular turbine. 

As a nonlinear and adaptive information processing system composed of a large 

number of processing units, artificial neural network has high adaptability to nonlinear, 

non-limited and unsteady high-dimensional complex space. Therefore, in order to 

comprehensively and carefully analyze the FCCM of tubular turbine, it is necessary to 

use artificial intelligence means to accurately study and predict the space composed of 

runner blade opening a0, guide vane opening β and flow rate Q, head H, efficiency ηand 

power P and the unit flow rate Q11 and unit rotation speed n11 converted by them. The 

specific strategies are as follows (Figure 3): 

 
 Figure 3. Neural network model strategy. 

In this research, the back-propagation neural network is used to learn and predict the 

experimental points of the FCCM, and the parameters of the neural network are adjusted 

according to the accuracy of the model. Finally, the neural network model suitable for 

the tubular turbine in this study is obtained. 

Combined with the FCCM of the tubular turbine and according to the actual 

operation of the turbine, the independent variables in the system are selected as the input 

parameters of the neural network, mainly the runner blade opening a0 and guide vane 

opening β of the turbine. These two parameters are adjusted according to the actual 
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operation conditions during the operation of the turbine. The range of runner blade 

opening a0 is -18°-16°, and the range of guide vane opening β is 40°-78°. Similarly, the 

dependent variables in the system are selected as the output parameters of the neural 

network, which are mainly reflected in the FCCM of the model, namely efficiency η, 

head H and power P. Finally, the unit flow rate Q11 and unit rotation speed n11 of tubular 

turbine are calculated through the obtained output parameters and the conversion formula 

above. 

In the neural network of this research, Levenberg-Marquardt algorithm is used for 

training, which can provide a good numerical solution. According to the number of 

samples, continuously adjust and select the number of training and verification samples, 

and finally select 30% of the samples as the training samples, 35% of the samples as the 

validation samples, and 35% of the samples to ensure the accuracy of the neural network 

model. Meanwhile, the number of hidden layers nhl in the neural network has obvious 

impact on the prediction effect. Therefore, the formula recommended is used to ensure 

the rationality of the number of hidden layers nhl [12]: 

hl in out eprn n n C� � �                                              (3) 

where, nin is the number of input layers, in this research, it has two layers; nout is the 

number of output layers, in this research, it has four layers; Cepr is the empirical 

coefficient which can be recommended as 1-10. So the range of nhl is between 3 and 13. 

Therefore, the number of hidden layers is chosen as 10 in this research. 

According to the above settings, the neural network model suitable for the FCCM 

of tubular turbine in this study is finally obtained. 

4. Results and Analysis 

In the figure of FCCM, since unit flow rate Q11 and unit rotation speed n11 are parameter 

variables, they represent the change of efficiency η of the same series of turbines under 

different working conditions. However, in the actual operation process and experimental 

operation of the hydro-turbine, the conditions are adjusted through the runner blade 

opening a0 and guide vane opening β. Therefore, the comparative analysis between the 

experimental results of the FCCM and the neural network results in this research will be 

carried out based on Q11-n11 and a0-β. 

Q11 - n11 -η contour map has been drawn according to the experimental results and 

neural network results, and the accuracy of the neural network model obtained above by 

comparing the similarity of the graphics can be analyzed. Among them, the two-

dimensional contour map obtained by linear interpolation according to the experimental 

results is shown in Figure 4a and the color in the figure indicates the efficiency of the 

hydro-turbine. Similarly, a two-dimensional contour map is drawn according to the 

results of the neural network model, as shown in Figure 4b. 
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(a) (b) 

Figure 4. Q11-n11-η contour maps obtained by different methods. (a): Q11-n11-η contour maps obtained by 

experiment; (b): Q11-n11-η contour maps obtained by neural network. 

In order to compare the similarity of the two images, the gray level difference is 

carried out after the graying of the two images. The image obtained after the difference 

is shown in Figure 5. The darker the color, the lower the difference between the two 

pictures, the more similar the two pictures are, and the brighter the color, the greater the 

difference between the two pictures. It can be seen from Figures 4a and 4b that in the 

overall picture comparison, the FCCM obtained by experimental linear interpolation is 

similar to that obtained by neural network. Only the extremely obvious highlight area 

appears in the upper left corner with little experimental data. However, due to the 

requirements of safety and stability of hydro-turbine during operation, it will hardly 

operate to this area, so it has little impact on practice. In the main operation area, that is, 

the high-efficiency area, the linear interpolation shows obvious edges and corners, which 

is difficult to appear in the real flow, but the prediction map of neural network can be 

accurately and smoothly expressed, indicating that the prediction of neural network can 

more accurately reflect the changes of the high-efficiency area of tubular turbine with 

unit flow rate Q11 and unit rotation speed n11. 

 
 

Figure 5. Q11-n11-η gray level difference map of 

experiment and neural network. 

Figure 6. Grayscale value difference map of 25 

small areas. 

In order to further scientifically display the similarity between the two groups of 

pictures and facilitate observation and reduce the amount of data, 0-255 in the grayscale 

map is divided into 25 small areas, and then Euclidean Distance and Cosine Similarity 

are used to accurately reflect the similarity of pictures, that is, the accuracy between the 

neural network results and the real experimental results and their linear interpolation.  
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Figure 6 reflects the difference of grayscale between the experimental interpolation 

grayscale map and neural network grayscale map in each region of the picture. It can be 

seen from the figure that the overall color scale distribution between the two pictures has 

been the same, and there is only a small gap in grayscale level at individual points. It can 

be seen that the similarity of brightness pictures is very high. 

Euclidean Distance is the most common distance measure, which is used to measure 

the distance of individuals in space. It measures the actual distance between two points 

in N-dimensional space. The smaller its value, the more similar the two pictures are. The 

formula is as follows: 

� 	 � 	1 2 1 2, , , , , ,n nA a a a B b b b� 
 � 
 , � 	2
( , ) ( 1,2, , )i id A B a b i n� �� 
 � 
� ��    (4) 

Cosine Similarity measures the difference between two individuals by using the 

cosine value of the angle between two vectors in vector space. The more similar the two 

vectors are, the smaller the included angle is, and the closer the cosine value is to 1. 

Compared with distance measurement, Cosine Similarity pays more attention to the 

difference of two vectors in direction than distance or length. The formula is as follows: 
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Thus, the similarity between the neural network results and the experimental results 

can be obtained. Through the Euclidean Distance, its value is calculated as 0.026. 

Through the Cosine Similarity, the cosine value is 0.999 and the included angle is 1.67°. 

It can be seen that the consistency between the neural network model and the actual data 

is very high. Therefore, the results of the neural network model can be used to replace 

the real data for analysis, so as to explore the complex influence of different operating 

conditions of the hydro-turbine. 

 

Figure 7. Contour maps of energy characteristics of hydro-turbine under the joint influence of a0 and β. (a): 

contour of a0-β-η; (b): contour of a0-β-H; (c): contour of a0-β-Q; (d): contour of a0-β-P. 

According to the neural network model obtained above, since the adjustment of the 

working condition of the hydro-turbine is carried out through the runner blade opening 

a0 and the guide vane opening β in the actual operation and experiment, we focus on the 
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relationship and influence between a0-β space and the real external characteristics of the 

hydro-turbine, mainly including the efficiency η, head H, flow rate Q and power P. a0-

β-η, a0-β-H, a0-β-Q and a0-β-P can be drawn. A total of four pictures are shown as 

Figures 7a-7d. 

It can be seen from Figure 7a that the high-efficiency area of tubular turbine is very 

wide. Within the range of runner blade opening a0 and guide vane opening β, the 

efficiency of turbine can almost reach more than 85%. Only when a few angles are 

combined in the edge area of the picture, the turbine shows extremely low efficiency. It 

can be seen that in order to ensure the operation of the hydro-turbine in the high-

efficiency area, it is necessary to ensure that the runner blade opening a0 of the hydro-

turbine is between -10° and 10° and the guide vane opening β is between 40° and 60°. It 

can be seen from Figure 7b that the head H of the turbine increases from top left to bottom 

right as a whole (i.e., in the direction of the black arrow in the figure), and the change of 

H is jointly affected by the runner blade opening a0 and the guide vane opening β. Figure 

7c reflects the influence of the flow rate Q of tubular turbine with the change of runner 

blade opening a0 and guide vane opening β. The change of flow rate Q is directly 

proportional to the runner blade opening a0 and guide vane opening β as a whole. The 

larger the runner blade opening a0 is, the larger the guide vane opening β is, the larger 

the flow rate in the turbine is. Within the high-efficiency area of the turbine, the flow 

rate range of the turbine is in the middle of the overall operation range, it shows that there 

is no obvious correlation between flow rate and efficiency. Figure 7d reflects the power 

change of the tubular turbine. The power of the turbine is closely related to its power 

generation. The high-power area of the tubular turbine is concentrated in the upper right 

corner of the overall changing working conditions, that is, the area with runner blade 

opening a0 is, the larger the guide vane opening β. However, for the safety and stability 

of the turbine, the operation of turbine cannot blindly consider the power generation. 

Under the real long-term operation condition, its power is relatively much lower. 

In order to further explore the influence degree and intensity of the operating 

parameters on the external characteristics of the turbine, the gray relation analysis is 

selected as the statistical analysis method. Gray relation analysis through the grey system 

analysis of the correlation degree between the index in the system and several factors 

affecting it, we can get which factors this index is more related to. 

Table 1. Gray relation analysis table of influence factors on turbine performance. 

Influencing 
factors 

η H Q P 
CD CO CD CO CD CO CD CO 

a0 0.61 2 0.69 2 0.68 2 0.77 2 

β 0.73 1 0.77 1 0.83 1 0.86 1 

Note: CD: correlation degree; CO: correlation order. 

Since a0-β are important factors affecting the external characteristics of hydro-

turbine, gray relation analysis is carried out for these factors to find out the strength of 

the factors affecting the external characteristics of hydro-turbine. 

It can be seen from Table 1 that in the real operation of tubular turbine, the 

correlation degree of turbine energy characteristics is η< H < Q < P from low to high. It 

can be seen that the influence of runner blade opening a0 and guide vane opening β has 

the highest correlation degree on turbine power and the lowest correlation degree on 

efficiency. The influence of runner blade opening a0 and guide vane opening β on the 
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energy characteristics of hydro-turbine is relatively high, both of which are above 0.6, 

reaching the correlation degree of “strong correlation”. Among the influence correlation 

degrees of some energy characteristics, they are above 0.8, which is the correlation 

degree of “very strong correlation”. 

The influencing factors can be ranked according to their correlation degree: β > a0. 

In the table, the influence degree of runner blade opening a0 and guide vane opening β 

on the energy characteristics of hydro-turbine is obviously consistent, which shows that 

the correlation degree of guide vane opening β is higher. This conclusion is also 

reasonable. Because the change of guide vane opening β will more obviously affect the 

flow area of guide vane components, that is, it can more effectively control the flow rate 

in the turbine. There is a certain conversion relationship between energy characteristics, 

the change of flow rate will greatly affect other energy characteristics of the turbine. The 

runner blade opening a0 changes the angle of attack of the flow into the runner 

components in the turbine, which affects more detailed problems such as the optimal 

efficiency and cavitation performance of the turbine. 

Finally, taking the head H and power P of the turbine as the base and the efficiency 

η as the index, another form of FCCM can be obtained, that is, the operating 

characteristic curve, as shown in Figure 8. 

 

Figure 8. Contour map of the operating characteristic curve. 

From the operating characteristic curve, the overall operation range of tubular 

turbine is in the triangular area at the lower right, and its maximum high- efficiency area 

is in the narrow area with head of 9-12 m and power of 5-10 MW. Near the high-

efficiency area, the increase and decrease of power and the decrease of head will lead to 

the sharp decline of efficiency. In the leading edge area of the middle area of the picture, 

the dotted line in the picture, there is a very obvious area of large efficiency oscillation, 

which shows that the internal flow of the turbine is complex and the flow changes 

extremely violently, which is very harmful to the stability of power generation. In order 

to ensure the safe and stable operation of the turbine, the operation of the turbine must 

avoid this narrow and long area. 

5. Conclusions 

In the FCCM of hydro-turbine, due to the limitations of experimental and real operating 

conditions, only the real situation of a few characteristic operating points can be obtained. 
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For unknown operating conditions and the overall operation of hydro-turbine, it can only 

be obtained through the linear interpolation of known points. In this research, taking the 

constant flow turbine as an example, it establishes the neural network model and predicts 

the unknown working conditions by using the advantages and characteristics of neural 

network. The results show that the neural network method can effectively ensure the 

accuracy of FCCM, and the results can more clearly guide the safe and stable operation 

of hydro-turbine and ensure the efficient and stable power of plant. 
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