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Abstract. Simulation and optimization enables companies to take decision based
on data, and allows prescriptive analysis of current and future production scenarios,
creating a competitive edge. However, it can be difficult to visualize and extract
knowledge from the large amounts of data generated by a many-objective optimiza-
tion genetic algorithm, especially with conflicting objectives. Existing tools offer
capabilities for extracting knowledge in the form of clusters, rules, and connec-
tions. Although powerful, most existing software is proprietary and is therefore dif-
ficult to obtain, modify, and deploy, as well as for facilitating a reproducible work-
flow. We propose an open-source web-based application using commonly available
packages in the R programming language to extract knowledge from data generated
from simulation-based optimization. This application is then verified by replicat-
ing the experimental methodology of a peer-reviewed paper on knowledge extrac-
tion. Finally, further work is also discussed, focusing on method improvements and

reproducible results.

Keywords. multi-objective optimization, knowledge extraction, industry 4.0,

decision-support, industrial optimization

1. Introduction

Industry and academia are increasingly focused on the concept of Industry 4.0 [1], even
though interest for Simulation-Based Optimization (SBO) have reduced since 2016 [2].
For industry, adopting the paradigm early means getting a competitive edge over other
businesses, and for academia there exists ample funding opportunities in the research
area due to national and international focus. Industry 4.0 includes cyber-physical sys-
tems, and more importantly, cyber-physical production systems [3]. Simulation models
are therefore also increasing in use, and to attain the benefits of prescriptive analysis [4],
the addition of optimization and knowledge extraction would need to be made. Analysis
of the large datasets from SBO have been described as Simulation-Based Innovization
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(SBI) or Knowledge-Driven Optimization (KDO) [5,6]. The knowledge generated from
the optimization data increases the usefulness of the optimization and can be utilized to
prescribe actions increasing the effectiveness of production systems, instead of relying
on guesswork or what-if analysis.

Academic research is facing a reproducibility crisis, most famously shown in the
field of Psychology [7], where decades’ worth of academic output in the form of peer-
reviewed literature reported results which are not reproducible. Academic journals are
countering this by embracing open science, where transparency and reproducibility are
increasingly important; encouraging researchers to publish supplementary data, e.g., raw
data, processed data, and code for analysis to reproduce and corroborate findings. Anal-
ysis steps only performed in a user interface or particular visualization software are dif-
ficult to document and reproduce; instead, each step should be expressed and be repro-
ducible in code. This is important both for publishing, and for the workflow for each
researcher. The creation of an open-source knowledge extraction platform is therefore
relevant, both from the perspective of industry and academia. It would allow for faster
decision-support delivered to strengthen the competitiveness of industry, and record steps
taken in visual analytics to later be reproduced, which benefits science and academia.

The goal of this application study is the development of an open-source tool to sup-
port the knowledge extraction process of MOO data, with the added benefit of captur- ing
the analysis in repeatable code. The open-source tool is then evaluated by reproducing
analysis from two different journal articles presenting knowledge extraction methods.

2. Background

In this section, the background for Multi-Objective Optimization (MOO) datasets and
their special properties will be presented. This section will also present theoretical back-
ground to the implemented methods of this study for knowledge extraction of MOO
datasets. SBI is based on decision trees explained in the section Section 2.1, and Flexible
Pattern Mining (FPM) is based on frequent itemset mining and association rule learning
presented in Section 2.2.

Creating knowledge by applying data mining methods to MOO data differ from
other data mining applications due to the properties of the MOO dataset [8]. These spe-
cial properties, and the requirements to the data mining methods applied to generate
knowledge from the datasets, can be summarized as follows:

* Handling of two separate spaces, objective and decision space
* Decision maker involvement

* Knowledge representation

* Different variable types in the data

¢ Problem parameters

Visualizations of MOO datasets are performed in the objective space, showing the
results from the optimization, but the extraction of knowledge is handled in the decision
space, with all the inputs. These two spaces are different, and clusters of objectives iden-
tified through clustering methods are probably not reflected as the same clusters in the
decision space. Thought needs to be placed into the application of knowledge extraction
and clustering methods for MOO datasets.
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The involvement of a decision-maker in a practical MOO problem to select the
wanted solution — and possibly also influence the optimization process by introducing
preferences — is an aspect special to MOO. The preferred solutions selected by a decision-
maker should be used to extract knowledge from their respective decision space, but
knowledge can also be gained by using data mining on the non-selected solutions to
differentiate decision variables between wanted and non-wanted solutions.

Representing the knowledge mined from the preferred solutions should generate
knowledge in an explicit form due to the need of presenting it to a decision-maker and
converting it to an actionable form. This explicit knowledge can be in the form of ana-
lytical relationships, decision rules, or association rules. A MOO dataset can include dif-
ferent types of data, both continuous, discrete, and nominal. Data mining methods would
need to handle a mixture of these [8].

MOQO problems can also include problem parameters in addition to variables and
objectives. These problem parameters are not altered by the optimization algorithm but
represent external controlling parameters such as constraints, variable bounds or even ob-
jective functions. By altering these parameters and then running the optimization again,
higher-level knowledge can be obtained [9].

2.1. Decision Trees

Decision trees have become widely used as classifiers in machine learning, pattern recog-
nition, and most important for this study, data mining [10]. This study will focus on Clas-
sification and Regression Trees (CART), due to their ability to generate both classifica-
tion and regression trees [11].

The data in decision trees is partitioned to maximize the homogeneity of the re-
sponse variables by identifying the predicting variable which will best split the data into
two homogeneous groups. For each partition, each predictor is evaluated, even those
used in previous partitions. Maximizing homogeneity in each partition is achieved by
minimizing heterogeneity, most commonly using the Gini Index, i.e., the probability of
arandomly chosen element would be mislabeled if it was randomly labeled according to
the distribution of labels in the partition. The base of the inverted tree is called the root
node, and the end results are called leaves or terminal nodes. After growing the trees, a
pruning step is applied where the tree is shortened by removing leaves, “trading accuracy
for simplicity” [10]. Pruning has been shown to improve the generalization performance
of the decision tree [11]. Applications to improvement of manufacturing can be found in
[12], [13], [14], and [15].

Decision trees are explicit in nature, as they are self-explanatory and can be con-
verted to a set of rules, and can handle both nominal and numeric attributes with discrete
and continuous outcomes [10]. The main problem with decision trees, is their tendency
to overfit the data, meaning that the model has become too specialized and will not per-
form well when encountering new data [16]. Reducing overfitting can be accomplished
by constructing average results over random samples of the data, where an early develop-
ment was bootstrap aggregation or “bagging”. Bagging grows multiple trees, each using
a random sample of the training data, and the predictions from all trees are then averaged
[17], eventually leading to Random Forests [18].



728 S. Lidberg et al. / A Knowledge Extraction Platform for Reproducible Decision-Support

2.2. Pattern Mining

Sequential pattern mining was developed through the analysis of market basket (sales)
data in an effort to determine which items were commonly bought together by a specific
customer [19]. Three concepts are important in sequential pattern mining, itemset, se-
quence, and support. The itemset is a combination of items bought together at a specific
instance, while the sequence is an ordered list of all itemsets bought by the customer. If
the sequence of a customer includes a specific sub-sequence, the customer supports that
sub-sequence. A list of all sub-sequences with a support value larger than a predefined
minimum support value is the target of sequential pattern mining [20].

Sequential pattern mining is a good method for identifying exact patterns in a
dataset, but for elicitation of explicit knowledge, the rules generated by decision trees
are more useful. FPM has been developed as an extension to sequential pattern mining to
combine the strengths of sequential pattern mining with the rule generation capabilities
of decision trees [21]. Each solution in the MOO dataset is treated as a customer in se-
quential pattern mining, and each variable as a transaction. Converting the sequences into
a table, where each parameter is evaluated (0,1) for less than, equal, or greater than each
of its discrete options, allows for the creation of rules by applying the apriori algorithm
to find patterns of ones. The stated benefits of FPM are: an unsupervised implementation,
the generation of rules, and does not require class labels. If a preferred area of solutions
is expressed by the decision-maker, the ratio of support for rules in the selected area to
that of rules in the unselected area can be used as ordering [21]. New methods related
to using MOO dataset with machine learning algorithms are usually related to online
KDO, meaning using the knowledge learned from the dataset to assist the optimization
to converge faster to some preferred region in the objective space [22]. In contrast, the
current paper is focused on offline KDO that the generated knowledge and visualizations
are used to assist human decision-makers (i.e., human learning).

3. Method

Using SBO has several benefits, but generates large amounts of data, which can be diffi-
cult to interpret and present to a decision-maker [23]. Without proper analysis and data-
mining, knowledge about the underlying system will be impossible to attain and some
benefits of SBI will be lost. Quick and high-quality visualizations can also aid in the
exploration of a dataset when performing an initial analysis of the problem or prepar-
ing data for publication. Existing solutions for SBO data exploration and knowledge ex-
traction are powerful, but many are closed source. Acquiring, modifying, analyzing, and
extending closed source software is difficult or impossible and therefore an open-source
alternative is beneficial.

The goal of this application study is the development of an open-source tool to sup-
port the knowledge extraction process of SBO data, with the added benefit of capturing
the analysis in repeatable code. This includes analyzing SBO data and performing the
steps from SBI using the R language, revealing new knowledge about the data and the
underlying system. To evaluate the efficacy of the open-source tool, two studies will be
reproduced; the study presenting the SBI method [24] and FPM [21]. Both journal arti-
cles utilize the ACM simulation model and data [25]. The model is based on an industrial
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problem where the interesting objectives are minimization of total annual running cost,
minimization of total investment cost for improvements, and minimizing total buffer ca-
pacities. These objectives are evaluated through settings for improvements, either pro-
cessing time /p or up-time /u, summarized by Suml, and the number of buffer places in
the buffers B; _ 31. The original article [24] follows the SBI process of:

1. Simulation-based multi-objective optimization
2. Data pre-processing

3. Pattern detection

4. Interpretation and evaluation

Running the SBO is not the focus of this study and is therefore left to other tools. The
open-source tool has a number of different views supporting the process steps of SBI,
as shown in Figure 1. Data exported from the SBO step can be used in the application
and entered into the first stage of analysis, called data pre-processing. The data pre-
processing stage is supported through two views, Import Data and Filter Data. After data
pre-processing follows Pattern detection, also supported by two views: Cluster Data and
Visualize Data. Finally, the last stage of SBI, Interpretation and evaluation, is handled
in the view Rule Extraction. The resulting data from the various stages can be exported
from the final view called Export Data. For FPM, Import Data, Visualize Data, and Rule
Extraction are used.

Knowledge extraction process of SBO data

Import Filter Visualize Rule

Data Data Data Extraction

GV Knowledge extraction process
LGV stored as repeatable R code

Figure 1. Knowledge extraction captured in code, allowing for a repeatable process.

4. Results

The following section will present comparisons made between the R implementation of
SBI and FPM, and their original publications [24,21]. The source code for the open-
source tool is publicly available as version 0.0.0.9000 [26].

4.1. Import Data

The intended use of the application is the analysis of optimization data obtained through
SBO. The Import Data view contains two parts, uploading data and assigning the param-
eters to one of three groups: Objectives, Inputs, and/or Outputs seen in Figure 2. These
groupings persist through the remainder of the analysis.

Uploading data lets the user choose a file, restricted to semicolon Comma Separated
Values (CSV)-files as the supported format. The Distance metric [24] can be added to
the dataset by computing the Euclidean distance for each point to the closest point on the
Pareto front.
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RulExtR

Upload data

ect a file exported from OptimizeBrowser, or which contains similar headers.
Choose CSV File

Browse. ACM.csv

Upload complete

Select Parameters

ct the type of parameters for importing. Parameters not selected in either category will be excludec
Objectives

RunningCost InvestmentCost BufferCapacity

Inputs
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B8 B9 B10 Bl B12 B13 Bl4 B15 Bl6 B17 B18 BI9 B20 B2l B22 B23 B24 B25 B26 B27 B28
B29 B30 B31

Outputs

Add distance metric

Import

Figure 2. Import Data view in the application.
4.2. Filter Data

The resulting datasets for SBO are usually large, with an iteration count in the tens of
thousands. Large amounts of data will complicate the visualization and hinder under-
standing for analysts and algorithms. Due to the iterative nature of the genetic algorithms
most commonly used for SBO, the solutions early in the optimization process could be
of limited value for the final analysis. The decision maker could also be interested in
certain regions of the objective space, or have specific preferences for one objective over
another. In these circumstances, filtering the data before clustering, visualizing, and ex-
tracting knowledge can be beneficial. To support these scenarios, the Filter Data view
was implemented, in the form of a table view. No filtering was applied to the dataset for
this application study.

4.3. Cluster Data

Identifying clusters in the data provides knowledge about which parameters influence
the result. Four categories of methods are available: Hierarchical, Partitioning, Density,
and Decision Trees, each tab containing different algorithms, shown in Figure 3. Each
method has different parameters and the inputs will change to reflect that when selecting
a new method. The automatic suggestion for the number of clusters to use is available for
some clustering methods, assisting the user to select the appropriate number of clusters.

Comparison of the results for this evaluation will be conducted using the data from
the finished SBO; thus, step one is not relevant here. As an additional step for this case
study, a top-level decision tree analysis was conducted to separate the solutions. The ar-
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Figure 4. Clustering comparison with [24] on top, and the results from the application study below.

ticle suggested 0.05 as the threshold value when analyzing differences between decision
variables, along with a max depth of four for the decision tree. Worth noting is the differ-
ence between the identified decision variables between this experiment and the article.
The experiment, in Figure 4, shows Ip,p1z and Ip,p16 as important, while the article
notes Ip,p10 and Ip,p1n, showing the problem with replicating results where code is not
available. Clustering for FPM is not required, and is therefore skipped.
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4.4. Visualize Data

Objectives in SBO are often conflicting, and visualization is difficult with more than three
objectives, i.e., dimensions. Identifying clusters and structure in data can be achieved
using several individual visualizations, combining them gives even more insight. With
brushing and selecting in the visualization, a decision-maker can select the solutions
which are relevant and most important to them when taking new decisions based on data.
The Visualize Data view has two components, a Parallel Coordinates plot on the
top, and a 2D/3D-view of the data at the bottom, shown in Figure 5. These components
share filtering, coloring, and dimension selection. The Parallel Coordinates plot allows
for filtering and quick visual comparison between the objective space and decision space.
The 3D-view offers an alternative view for visual comprehension of the current data,
while the 2D-view offers the possibility of selecting interesting areas and solutions.

RulExtiR

Figure 5. Parallel Coordinates chart and visualizing an interesting region in the 3D scatter plot.

The 2D tab shows n — 1 two-dimensional scatter plots, where n is the number of
objectives set in the Import Data view. As shown in Figure 6, the X-axis is always the
first objective, while the Y-axis changes to show the remaining objectives.

4.5. Rule Extraction

Extracting rules from SBO data allows for prescriptive analytics. This shows not only
which parameter, but also the necessary change to reach a wanted state. The application
study incorporates both rule generation by SBI and FPM.

4.5.1. FPM

For FPM, two parameters are utilized when creating rules, minimum significance and
rule level. Minimum significance is an internal parameter to FPM setting the threshold
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RulExiR

= . .

RunningCast RunningCost

Figure 6. Selecting an interesting region of the dataset on the 2D plot.

of support for each rule to be included in the final rule list. The second parameter, rule
levels, sets the level of rules to be generated. The default level, one, generates simple
rules such as B} = 1. Increasing the level, means that FPM will consider combinations of
two rules, i.e., By =1 & Ip,p10 = 0, when evaluating support. The levels are inclusive,
meaning that when set to two, rules of size one are also included in the evaluation. The
rules are presented in order of decreasing importance through the FPM implementation
in R, shown in Figure 7. Solutions are either selected in the Visualize Data view or
assigned through a reference point. Rule generation through FPM shows B8 = 1, with
100 % matching the selected solutions, and 0.17 % for the unselected solutions. This
exactly matches the rule generated in Table 17 [21, p. 137] for the same dataset.

RulExtR

Slgnificance | Unsignificance

10000% oame

Figure 7. Rule generation through FPM showing B8 == 1, with 100 % matching the chosen solutions.
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Figure 8. Rule generation by SBI on the first sub cluster of RCI, showing Y.(1, +1,) > 11 (Suml) as the most
important rule.

4.5.2. SBI

Rule generation by SBI utilizes the Distance metric, i.e., the shortest distance from one
solution to a solution on the Pareto optimal front. Due to issues with determining the se-
lected solutions in the original publication, only one sub-cluster (RCI-1) will be analyzed
in this paper, c.f. [24, p. 834]. By selecting the two topmost Pareto solutions and recal-
culating the Distance metric against the selected solutions, decision trees can be used to
generate rules for those areas. The application shows the rule Y (I, +1,) > 11 (Suml) —
in addition to the rules generated for the top-level analysis in Section 4.3 — as important
to reach the selected area, in accordance with [24]. Further comparisons are difficult due
to the lack of implementation details in the original article.

4.6. Export Data

After completing the analysis, the Export Data view can be used to export four datasets,
representing the state of data from each of the previous steps, and an R script file. All
the data for the first four steps will be exported as CSV-files, using semicolon as the
delimiter and dot as the decimal mark. Exporting code allows the user to download an
R script file with the generated code, seen in Figure 9. The main steps taken in the
application, regarding changes to the dataset, are recorded in the code output. This allows
for the reproduction of the result without the need for the interactive environment. For
example, selecting the exact same solutions interactively can be difficult to achieve with
consistency, having the exact solutions stored as code allows for exact reproducibility.
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Figure 9. Export Data view with download options on the left and generated code on the right, cropped for
the sake of brevity.

5. Conclusions and Future Work

Multi-objective optimization methods, such as NSGA-II, can iteratively optimize simu-
lation models by modifying model inputs. The outcome of the optimization process is
a large optimization dataset, which can be difficult to interpret. By applying knowledge
extraction methods, such as FPM and SBI, important decision variables can be identified.
Knowledge extraction methods can provide the name, as well as the value, of important
parameters in the form of rules. These rules provide recipes to a decision-maker on how
to optimize their production processes according to the decision-makers’ preference. Ac-
quiring, modifying, analyzing, and extending closed source software is difficult or im-
possible and therefore the open-source application created is useful to successfully repli-
cate results. Reproducing the analysis is possible through the transformation of steps in
the analysis into R code. This is important for both transparency and validity of research
results, and helps mitigate one issue of reproducibility in science.

The experiments presented in this study show that the knowledge extraction methods
implemented in R, for both SBI and FPM, are accurate. Although the validation is diffi-
cult when only working with reported data in the papers and not exact code. Performance
of the specific method can be further improved by tuning the parameters. Only CART
has been used for partitioning by decision trees, other methods could also be included
to improve accuracy. By offering alternative implementations of knowledge extraction
methods in other languages, the methods can be more widely adopted and more easily
integrated in projects. Future work will be focused on efforts to include these methods in
a larger decision-support framework in R. The inclusion of Random Forests and Gradi-
ent Boosted Machines to improve rule generation of SBI is another avenue of interest, as
well as evaluating the framework with industrial decision-makers on industrial problems.
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