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Abstract. Additive manufacturing (AM) was introduced the 1980’s for rapid 
prototyping (RP) purposes but now AM provides complementary techniques to 
conventional manufacturing processes and offers  advantages when components can 
be exacting, impossible, and too costly to be produced by conventional methods due 
to complex structures and geometric configurations, which require tailored designs. 
They are also often mass-customized components, with custom-made properties and 
low volume production requirements making AM the ‘technology of choice’ since 
its added-value aspects cannot be achieved by any other manufacturing technologies. 
These advancements in manufacturing, demand standardized fact-based decision 
support systems (DSSs), to support AM practitioners in their task selecting the most 
suitable techniques for given applications. Hence, this paper aims to increase the 
understanding of what - of how - DSSs are used in selecting and utilizing AM in 
various applications. This paper’s core message, considering practical implications, 
is to guide and support AM researchers with an overview of the DSSs for AM 
landscape. This paper presents and compares different models and tools classified 
within four categories used as DSS for AM and identifies their advantages and 
disadvantages by conducting a 3-step systematic literature review (SLR). A total of 
388 literatures were initially retrieved, and according to an inclusion criteria analysis, 
the literatures were evaluated. This is the first SLR emphasizing and synthesizing 
obtainable literatures on AM DSS. Until now, this topic has acquired narrow 
exploration; however, the authors believe it is of rapidly growing importance to both 
scientists and practitioners. 

Keywords. Additive Manufacturing (AM); 3D Printing (3DP); Decision Support 
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1. Introduction and Motivation 

Additive manufacturing (AM) is one of the advanced manufacturing techniques that gave 
a breakthrough in how companies design, prototype, and manufacture products. AM has 
various advantages as it enables development of intricate geometrical components for  
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medium/low volume production [1]. AM produce objects layer by layer from a CAD 

design. [2]. AM technologies have been initially utilized in the early 80s for rapid 

prototyping (RP), however, over the last 10-15 years the potential for production of end-

use parts has been explored predominantly in the metal AM industry [3]. A big 

opportunity for manufacturing companies is to produce parts in smaller quantities while 

not sacrificing cost-effectiveness due to the technological advancements in the AM 

industry e.g., new processes and materials. Hence, many companies e.g., in aerospace, 

automotive, medical/dental device, and health care industries are adopting and 

implementing AM [1]. 

AM also has some limitations and thus it might not be suitable for the production of 

certain parts in comparison to conventional manufacturing techniques e.g., machining 

[4]. For example, in the mass production of simple parts that are 2 or 2.5 dimensional 

and/or have no re-entrant features. Another limitation, which is of more interest to this 

research, is having access to a robust fact-based decision support system (DSS) for 

selection of the most suitable production process. Considering aspects e.g., accuracy and 

tolerances, surface finish, cycle, and setup times, cost, and material properties. Putting 

aside AM technological and material developments, which are continuously of focus in 

research, to maximize the AM processes capabilities, generic modular DSSs must be 

designed and applied to assist with the most suitable process selection to obtain the best 

outcomes e.g., in terms of performance mechanical properties. This paper conducts a 

systematic literature review (SLR) on AM DSS to review the prior studies of AM 

decision support system (AM DSS) aiming to identify the outcomes of these studies e.g., 

consensus, disagreement, practicalities, and shortcomings. The purpose is to analyse the 

existing DSSs utilized for the selection of AM manufacturing techniques considering 

various aspects e.g., cost, material, surface finish, mechanical strength, ease of 

manufacturing, size, time, quantity, geometric complexity, sustainability. Hence, this 

paper answers the following research questions (RQ): What are the DSS which have been 

developed or used for AM? How can DSS enable users to select the right AM processes? 

2. Systematic Literature Review 

Systematic literature review (SLR) is “a specific methodology of research, developed to 

gather and evaluate the available evidences pertaining to a focused topic” [5].  

 

Figure 1. Steps in a systematic literature review also followed in this study [6] 

Figure 1 shows the steps in an SLR process which were taken during this research. 

The search engines used in this SLR are Web of Science, ScienceDirect, and SCOPUS. 

Figure 2 shows this study’s search procedure. The retrieved literature was forward traced 

and backtracked for literature that is relevant. Journal articles and peer-reviewed 

scientific conference papers were selected for this SLR. The protocol includes a ‘studies 
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selection’ section, where inclusion and exclusion criteria are decided upon. The inclusion 

and exclusion criteria of this SLR were: 1) literature must contain information regarding 

DSS in AM and must provide information on how to implement DSS for process 

selection, and 2) it should give information on how decisions would be affected for 

applications of AM e.g., finishes, accuracy, and manufacturing cost for process selection. 

 

Figure 2. Systematic Search procedure also followed in this study [6] 

The literature retrieved using various search string keywords was documented in a 

database using reference management software, and they then went through a ‘title 

screening’ process. Followed by ‘abstract screening’, ‘introduction & conclusion 

screening’ processes, and detailed analysis of the selected literature. Literature was 

screened based on the protocol and any doubt of inclusion was further examined [7]. The 

list of excluded papers was also documented for records and cross-checking. To assess 

the quality of the literature after the inclusion processes, a deeper assessment of the full 

text was performed. The quality was assessed by various discussions with the co-authors 

hence the facts given in the report are reasonable and defendable [7]. Figure 3 and table 

1 below illustrate respectively the SLR processes, and the search engines, and the search 

string keywords used in this SLR. 

Table 1. Search engines and search strings keywords for this SLR 
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Figure 3. Steps taken in this systematic literature review 

3. Results 

The search string keywords, seen in table 1, gave 388 papers, and after ‘title screening’, 

137 papers were selected. The papers were then assessed for duplication in different 

search strings and engines, giving 74 papers. After the duplicated papers were removed, 

the remaining 74 papers were screened by their abstracts, and any papers in doubt were 

considered for further screening. After the introduction and conclusion screening, 40 

papers [1-4] [8-43] were found following the SLR protocol’s inclusion criteria, which 

represents 10.3% of the original literature search. Figure 4 summarizes the process. 

These 40 selected literatures (29 journal articles and 11 conference papers) were then 

read fully and analytically interpreted for deeper evaluation. Important parameters 

established in the literature are recorded and compared for an understanding of the 

research topic trends e.g., the literature was published in a period from 1997 to 2020. 

 

Figure 4. Inclusion criteria analysis in this study 

Figures 5 & 6 shows the quantity of literature across journals and conferences 

proceedings. There are different methodologies and decision-making techniques, which 

were applied as DSS for AM processes selection in the studied literature. These are 

mapped in figure 7. Sometimes, similar techniques or methodology is used, but have 

been utilized differently. The classification in figure 7 breaks down the topics into 

subdivisions to understand them better. It also facilitates identifying and understanding 

the similarities and differences of the processes compared in the next section, discussion.  

The main DSSs reported in the selected literature are in four categories: multi-

criteria decision making (MCDM), mathematical modeling, software-based, and design 

approach. DSSs are subdivided into categories because of the following reasons: 1) 

MCDM methods follow a ranking process and decision matrix to perform the decision 

support, 2) Mathematical modeling performs mathematical calculations with cost, build 

time, material consumption, etc., and decisions are based on the results, 3) Design 

approach uses design and checks for various complications to select the best method, 

and 4) Software-based uses historical data to program the decision-making process. 
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Figures 5 & 6. Distribution of the selected articles in Journals & selected papers in conference proceedings 

MCDM is the most commonly used technique with 52% of the selected literature 

reported. The second, DSS, is a software-based technique, followed closely by the design 

approach having a 13% share and mathematical modeling, 10%. There are also 5% of 

the selected literature, which cannot be included in any of the above 4 categories. This 

“other” category has low significance in terms of process selection; The studies gave a 

basic selection process explained via general aspects e.g., usage of excel sheets.  

 

Figure 7. Classification of DSS processes in the studied literature 

The selected literature's analysis suggests that DSSs have been utilized for different 

applications in various sectors as classified in figure 8. An exceptional application, 

‘austere environment’ was the most unique application, where the key point of utilizing 

a DSS was to make a quick decision in product manufacturing. The manufactured 
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products are used in various combat zone equipment whereby the capacity to make a fast 
decision for AM process selection enabled production of the part with a short lead time. 

 

Figure 8. DSS applications in the selected literature and the number of papers/articles for each category 

4. Discussion 

This section presents a comparison of different DSS methodologies based on the SLR 
results. Each DSS methodology is also briefly described including its the pros and cons. 

 Multi-criteria decision-making (MCDM) is further classified into different 
processes. MCDM strategies are designed for decision-makers to provide them with the 
best alternatives from a finite range of options. The methods used are divided into two 
steps: the screening method and the ranking method. When we compared the Analytic 

Hierarchy Process (AHP) utilized in the selected literature, we saw some common 
structures in the methodologies. A process is broken down into different hierarchy levels 
for understanding and assessment of the problems. This enables the user to 
systematically analyze AM processes by comparing two criteria at a time and to 
determine its weighed criteria. This comparison is important as it forms the basis of the 
process giving results in the form of a ranking between AM processes. Using AHP, the 
cost can be calculated, and the best suitable materials can be selected using a decision 
matrix. Since AHP only conducts par-to-par comparisons, it is difficult to evaluate all 
competitive parameters at the same time as it takes more time and effort. Most of the 
AHP processes, used in the selected literature, have almost the same working procedure. 

While using the Technique for Order Preference by Similarity to an Ideal Solution 

(TOPSIS) process, the methodology followed is like the AHP process. Modified TOPSIS 
determines the ranks between RP process by pair-wise comparison and then provides the 
final rankings. Using the Optional Navigation Module, the users can form preferences 
and multi-dimensional data visualization (MDDV) tool to visualize their chosen criteria. 
Once the boundary for these parameters is set, changing the boundary influences the final 
score. For each attribute, the user should look at the performance distribution of these 
choices to see what levels of performance are possible. The major difference between 
AHP and TOPSIS is that the user can specify the requirements and has the option to filter 
out the non-feasible alternatives. This process gives the decision-makers the freedom to 
eliminate the entire process types from the outset of the down-select process.  

COmplex PRoportional ASsessment (COPRAS) method can manage qualitative 
attribute data. The methodology applies to any decision-making situation and provides 
more effective results in comparison to TOPSIS and AHP. It has a simple flow of 
analysis as the input for AHP and TOPSIS depends on the user and if the user changes 
the relative importance of the considered criteria, then their ranking will be different 
from the actual one. The ranking obtained from using this method is more reliable than 
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the other previous methods. In the literature where the COPRAS method is used to make 
the final calculation, AHP can be used to find the weights of the relative importance of 
attributes, or the user can assign weights to the criteria on their preference [8]. 

Fuzzy Synthetic Evaluation (FSE) is a web based DSS process, which is divided into 
different hierarchy levels. This process also uses one of the ranking methods to rank 
different RP processes. E.g., when it comes to lesser environmental impact, the fuzzy 
ANP-TOPSIS method is suitable. AHP-conjoint analysis provides better results when 
they are combined. The downside of each process outweighs and compensates for the 
disadvantages of the other processes. 

All the DSSs used, require selecting an RP process, where applied ranking methods 
e.g., AHP, TOPSIS, Best Worst Method (BWM) are used to rank the processes. Users 
consider the BWM technique to be better than AHP since it has better ordinal consistency, 
consistent comparison, minimum total deviation, closer weight ratio, and fewer 
comparisons. Software's based processes like machine learning (ML) and artificial 
intelligence (AI) are also being used in DSS [2]. When it comes to AI-based software, 
different tools e.g., SIEMENS NX are used to extract and store data. Konstanz 
Information Miner (KNIME) is another open-source tool, which creates a workflow in 
the data processing and maps the complete process from data selection to evaluation, 
interpretation, and visualization. The KNIME is used for data processing when AI is used.  

In one of the literature [9] a cloud-based ML tool has been implemented. A set of 
criteria was built, using both traditional manufacturing and AM literature, and was tested 
to understand if they meet the requirements of a quick screening tool [9]. A database of 
parts and assemblies needs to be developed and each needs to be assessed for AM 
potential. Afterward, when a new part or assembly needs to be assessed for AM 
candidacy, the same selection criteria will be extracted from it and will be fed to the 
decision model. The decision model will then use the labeled database of historical data 
to form the final AM candidacy decision. There is an agent-based DSS where machine 
agents are used to communicate with specific computer-aided manufacturing (CAM) 
systems that correspond to each 3D printer they represent. These CAM systems are 
typically associated with a few process profiles that contain special parameters values 
for different combinations. CAM software utilizes the latest firmware update so that the 
most updated information is provided. An agent with operators and other information 
technology (IT) systems could also be done independently. When it comes to software 
processes, different approaches are being used. Each of them is different from the other. 

In mathematical modeling, see table 2, different models are proposed to establish 
economic models. Parameters, considered in these models are different from each other 
with some similarities. Selected models are more detailed and well explained with 
examples where they consider models based on energy per part manufactured and cost 
factors [10]. Models used in a few pieces of literature are much simpler, and not well 
explained [11]. Selected cost models are focused on four different RP properties of 
building accuracy, surface roughness, building time, and building cost [12].  

In the design approach, the axiomatic design method is ideal for developing new 
product designs and assessing designs at early stages in the process. The axiomatic 
design considers the manufacturing of the component after the design has been defined 
in the physical domain, and the process variables describes the process domain.  
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Table 2. Mathematical model approaches [10] [11] [12] 

Literatures Models used 

Toward Generic Models for 
Comparative Evaluation and 
Process Selection in Rapid 
Prototyping and Manufacturing. 

Cost models for  

 Material cost 

 Machine running cost. 

 

 Cost in data preparation  

 Cost in post-processing. 

A comparative assessment of 
energy demand and life cycle costs 
for additive- and subtractive-based 
manufacturing approaches 

Models proposed for each energy per part manufactured and cost.  

 Quantifies the cumulative energy demand per produced part. 

 Quantifies the total cost per produced part. 

Framework to combine technical, 
economic, and environmental 
points of view of additive 
manufacturing processes. 

Models presented are: 

 Electrical model 

 Fluid model 

 Material consumption model

 

 Economic model  

 Technical model 

 
In Decision Support System for Additive Manufacturing (DS-SAM) the critical 

required parameters, are the inputs to the system. Then the design rules are set and act as 
guidelines for the new ideas and concepts. Then, the binary evaluation determines the 
efficacy for each of the ideas. Finally, cost assessment and design verification are 
performed. In DfAM, complex geometries for optimized performance are designed. 
Based on aesthetical needs of the product, the process can be selected. But, in multi-
material additive manufacturing (MMAM), the process is checked against DfAM rules 
to ensure manufacturability. To select a suitable MMAM process, the parameters should 
match the database, which is already organized via technical specification. Designers 
need to select portions from the database specifications, giving a limited choice for the 
designer. The database needs frequent updating. There are no such similarities with the 
methods used in the design approach for DSS. Each process has its method of getting the 
best results. 
Table 3. AHP in product development applications [34] [41] [43] 

 
When we performed an in-depth investigation into the different AM processes used 

in various applications, we noted that in product development (PD), a variety of DSSs 
was used e.g., software-based process, machine learning, and various MCDM processes 
e.g., BWM, TOPSIS, AHP, etc. This might indicate how important, AM has become in 
PD. This analysis helps us to understand the scope of DSS in terms of PD, which has 
been increasing, and that may justify more literature availability. Another finding is that 

Literature Unique features for implementation in product development in terms 

of AHP 

AM process selection based 
on parts selection criteria 

Uses constraining factors like the build dimensions, mechanical properties, 
etc., for the process of ranking which helps in the comparison.  

Applying decision methods 
to select rapid prototyping 
technologies 

Two scenarios are considered for the process of ranking: 

 The cost of part (C) and build time (B) was considered the most 
important factors followed by elongation, tensile strength, accuracy, 
and surface roughness.  

 Where accuracy (A) and surface roughness (S) were considered 
most important followed by elongation, tensile strength, cost of the 
part, and build time. 

To evaluate the approach, a comparison matrix for the criteria was created. 

Material selection 
methodology for additive 
manufacturing applications 

For performance, physical, and thermal requirements, three criteria were 
identified as governing criteria for the screening stage, namely: material 
hardness, surface finish, and melting point.
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AHP is one of the DSS techniques, which is mostly used in the PD domain. When we 
investigated what type of products and processes AHP was applied to; we found out that 
when a new product is being developed, usage of AHP could be crucial as a DSS for 
process selection, and for identifying and selecting the product’s features. AHP is a 
technique, which ranks specific features in terms of usability, cost, technical features. 
and helps in selecting the process to prototype the product and can also aid in 
understanding the functions of the products being developed. Table 3 provides 
information regarding certain unique methods in the selected literature for the process of 
AHP. These features are implemented based on the type of product that is produced. 

Here the uniqueness is the few factors that are considered for the process of ranking. 
The ranking scales used in the selected literature are quite different e.g., in the production 
development application, the priority for the ranking variables would be the performance 
e.g., mechanical properties, thermal properties, dimensional accuracy, whereas in the PD 
application, the cost, aesthetic and build time can be of higher priority. The parameters 
are prioritized based on the application’s sub-categories in production development 
shown in Figure 8 e.g., in the aerospace industry parameters such as thermal properties 
and mechanical strength can be of higher priority, whereas in the automobile industry 
mechanical properties have higher priority than thermal properties. Aesthetics are 
equally important in automobile industry but may not be so in producing turbine blade 
in applications much as in energy industry, where chemical and physical properties are 
of higher priority. Hence, in the AHP process the ranking of parameters is differ based 
on the applications. 

TOPSIS is used as a DSS in PD and deployment applications in remote or austere 
environments. In deployment in remote or austere environments, the authors found that 
requirements can take multiple forms, such as specific vs. general requirements and hard 
constraints vs. soft objectives [13]. These requirements are grouped into six categories 
that inform decision-makers of critical considerations when deploying AM technologies. 
The categories are 1) process, 2) machine, 3) part, 4) material, 5) environmental, and 6) 
logistical, and also all these 6 categories’ constraints and objectives. Based on the 
application there is a possibility to prioritize this critical consideration. When we 
compared the same with PD application, we noted that the critical parameters were 
established by a questionnaire from different user groups e.g., service bureaus, 
governmental institutes, and industry users. The following parameters are considered for 
ranking: tensile strength (T), dimensional accuracy (A), surface finish (S), and economic 
criteria e.g., Material cost (C). Based on the decision matrix, the right process is selected 
by rating the parameters listed above. The decision matrix helps in determining positive 
and negative ideal solutions, which in turn determines the score for the parameters. These 
scores are tabulated and represented in charts such as Pareto diagrams, and Bretton–
Clark’s Conjoint Linmap. Comparing the mathematical modeling in the application like 
production development and sustainability, various cost models are proposed in the 
literature, but in sustainability, Life Cycle Assessment (LCA) method is used along with 
other various mathematical models, and in production development, the following 
variables are considered important: material cost, machine running cost, cost of post-
processing, and build time. In sustainability, various parameters are calculated e.g., 
electrical model, fluid model, material consumption model, LCA, and economic model. 

There has been a higher priority of sustainability issues in comparison to 
manufacturing applications, where cost model and production time are considered as 
higher priorities. In manufacturing applications, artificial intelligence (AI) is used in a 
few of the selected literature, and in PD various algorithms are used to produce a software 
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program that is used in process selection. In manufacturing, AI is used to generate a 

database with knowledge discovery. Using the CAD data, the AI generates a knowledge 

base and then exports important features to excel where the data is tabulated and that is 

followed by using the AI software KNIME for selection of the right process. There is a 

similarity between the usage of AI in manufacturing and the usage of programming and 

algorithm in PD processes. In table 4, the advantages and disadvantages of the various 

processes that are dealt with in the selected literature are presented. 

Table 4. Advantages and disadvantages of DSS processes. 

 

5. Conclusion and Outlook 

The primary goal of this paper is to help researchers and practitioners to build and 

implement DSSs in AM by guiding to what extent the research has been carried out, in 

what context, and what DSSs are utilized. This SLR provides an in-depth insight on the 

topic of DSS in AM. AM and its potential to build complex structures and bring new 

designs to market in various applications have been and still is a very important. But the 

DSS required to make the process a success is yet to be fully discovered. When the 

criteria of each of the processes change, the decision-making ability also changes. There 

is no standardized fact-based DSS for all the applications. A selected methodology 

should be implemented in the early stages of optimizing the processes. Moreover, DSSs 

developments should be considered to make the processes more efficient, and in a timely 

& cost-effective manner. One of the greatest benefits of the DSS in AM is that it does 

not only help in the reduction of PD time, design rework, and cost, but also it assists in 

better findings in terms of technique to meet customer and organizational 

requirement.[14]. DSSs can also help in reducing waste usually created by trial-and-error 

methods helping in reducing the material usage and making the process more sustainable. 

Further research is required in DSS for AM in utilizing modern technologies e.g., 

AI and machine learning to help achieve the goal in the development of a modernized 

fact-based technique (vs. mostly based on experiences) for an accurate process selection. 

Another avenue for future research would be to reduce the cost for the implementation 

of modern technologies. Machine learning and AI are the two examples of the most 

desirable techniques in terms of accuracy, but they can be very expensive to implement. 

The process of using historical data for the process selection is an alternative. Here 

a database is maintained of various designs performed in the past. By using machine 

learning, the decision-maker can use the past data for a selection of an alternative solution. 
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This can also be considered as one of the techniques, which can be explored in future 
research as a possible DSS for AM.  

If DSS processes are interlinked, this could provide highly accurate results. This is 
currently little followed in research that has been assessed in this SLR. One reason could 
be that the researchers’ and/or practitioners' focus have been on a specific process. This 
can be solved by linking different departments to generate an accurate and generic 
methodology for the DSS in AM. For example, the ranking process can generate accurate 
results, but one limitation could be its time-consuming nature as there would be some 
mathematical calculations to be performed to obtain the results. However, by involving 
the software team to help generate an algorithm to solve the mathematical problems, the 
result could be generated faster. Hence, one of the main future scopes could be to link 
various MCDM processes to certain programming software. This could lead to obtaining 
desirable results at a faster rate, and would probably be more cost-effective, in 
comparison to the implementation of AL and machine learning techniques. 
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