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Abstract. Online monitoring of Laser Powder Bed Fusion is critical to advance the 
technology and its applications. Many studies have shown that the acoustic signal 
from the laser powder bed fusion process contains a large amount of information 
about the process condition. In this research, we used an acoustic system for the in-
situ characterization of a wide variety of different single-track geometries. The 
internal acoustic system includes a microphone and accelerometer. The melting 
mode, cross-sectional shape and dimensions of Ti6Al4V single tracks at different 
process parameters are presented. We have established a correlation between track 
geometry, internal defects and acoustic signals. The parameters are varied and tested 
against the acoustic frequency measurements to determine the sensitivity. We 
determined the patterns of signal behaviour in the event of anomalies (spatter, 
balling, pores, undercut). The characteristic features of the process are traced to a 
commercial machine. Well described dataset with correlated monitoring data and 
signal tracks properties obtained and can be used for building classification model 
and quality prediction. All this is aimed at creating a database of experimental data 
that will be a key for LPBF digitalization and control, allowing real-time control of 
the process to optimize part quality and, more importantly, help with decision-
making algorithms. 
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1. Introduction 

Due to a wide range of scientific research, it has become known that Laser Powder 

Bed Fusion (LPBF) is multifactorial [1]. Many critical flaws can occur without changing 

the characteristics of the upper layer, for example, subsurface cracks and pores [2]. Part 

quality and certification are becoming increasingly crucial for additive manufacturing, 

especially for industrial aerospace and other safety-critical applications. Online 

monitoring is challenging since LPBF is sensitive to many small-scale variables, which 

cannot be easily tracked and measured [3,4]. Therefore online monitoring has become 

the leading research area with large scale projects such as 'Real-Time Monitoring and 

Control of Additive Manufacturing Processes' at NIST in the USA [5].  

Most commercial LPBF machines have implemented monitoring systems based on 

optical sensors such as cameras and photodiodes [6]. The building process can take up 

to several hours or days; therefore, any monitoring system is faced with the challenge to 

analyze an incredible amount of data. A high-speed imaging system can result in large 
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amounts of data, up to 75.1 GB of images every second [7]. In contrast, recording with 

a 24bit microphone at 100 000 samples per second would result in 0.3MB/s. Hall [8] 

published a world patent for using gas borne acoustic emission (AE) for LPBF online 

monitoring in 2016 and 2017. Some initial results for applying this method in a 

commercial machine was reported [9]. At the same time, structured based AE was 

reported as early as 2016 [10], and two years earlier, a more conventional structural 

ultrasonic testing method based on sending and receiving waves through the part as it is 

being built was investigated [11,12]. 

Many developments aim to process big data produced by optical monitoring 

systems[13] using artificial intelligence and, more specifically, AE [14, 15]. Machine 

learning is used to find the dependencies between the input parameters and sensor data 

to determine the quality of the final part. Another development for gas borne AE for 

LPBF is using an optical microphone [16,17]. This allows for a much greater frequency 

range but at an increased cost and complexity. Ito et al. [18] measured structure AE for 

frequencies above 50kHz and found that they could identify the position of a single track 

using two sensors.  

Although AE monitoring for LPBF has been proven to give valuable information, 

much work is needed for the technology to be established/implemented. In a review of 

online monitoring, Yadav et al. [6] concluded that it is still in infancy. None of the online 

monitoring methods can cover all types of different defects [19]. 

For gas borne AE systems that do not rely on artificial intelligence, data sizes 

analyzed using digital signal processing is limited due to the incredible amount of time 

it takes to extract and analyze signals, not to mention preparing the micrographs and 

analyzing the corresponding physical tracks. Therefore, this paper aims to present quality 

data of gas, and structure-borne AE features with greater statistical significance for a 

wide range of process variables. This is done by carefully considering variables such as 

the layer thickness controlled by grooved substrates and analyzing a more significant 

amount of data. At the same time, keeping industrialization in mind, a commercial 

machine with a simple, inexpensive gas borne AE and contact piezoelectric 

accelerometer setup is used. 

 

2. Methodology 

The experiment consists of two plates on which single tracks are produced using 

different parameters while measuring the sound and vibrations. Two plates were 

designed; the first; used to measure a wide range of laser parameters, i.e., laser power 

and scanning speed. The second plate measures slight changes in layer thickness directly 

related to the amount of material involved. 

The experiments were done in a commercial Renishaw AM400 LPBF machine 

equipped with a reduced build volume module using Ti6Al4V powder and substrates. 

While careful consideration not to disrupt the machine's regular operation, a microphone, 

accelerometer, and camera were fitted inside the chamber, as shown in Figure 1. 
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Figure 1: Renishaw 400 chamber with acoustic sensors, camera and grooved substrate 

 

During this experiment, one of the main tasks was to create a large variety of signals 

that could correspond to various geometries of the single track. The substrates were 

machined with grooves varying in depth to accurately measure the influence of layer 

thickness on acoustic emission. This allows better control over the amount of material 

involved in the process.  

The machine is equipped with a 1070 nm laser with a 65 μm spot size and a point-

by-point laser exposure methodology. TI6Al4V (ELI) gas atomized powder with the 

following chemical composition was used: Ti – balance, Al – 6,35%, V – 3,73%, Fe – 

0,17% (weight %). The equivalent diameters (by volume) of the powder particles were 

d10 = 12 μm, d50 = 21 μm and d90 = 31 μm. 

2.1. Plate 1 Laser parameters 

The different laser parameters for both plates can be seen in Table 1. For Plate 1, 

the laser parameters were varied in such a manner to measure the influence of specific 

changes; For sets 1-7, the energy density was kept at approximately the same level by 

changing both the laser power and speed. For sets 8,9,12,15, and 16, the laser power was 

constant, only varying the scanning speed by ±5 and ±10%. For sets 10,11,12,13,14, the 

scanning speed was constant, the laser power varying by ±5 and ±10%.  
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Table 1. Laser parameters for Plate 1 and 2. 

Set Laser Power 

(W) 

Scanning 

speed(m/s) 

Energy density 

(j/m) 

Plate 1 

30 & 50μm 

Plate 2 

50,60,70,80,90 

& 100μm 

1 400 1,00 400 x  

2 375 0,93 403 x  

3 350 0,87 403 x  

4 325 0,81 402 x  

5 300 0,75 401 x  

6 275 0,68 402 x  

7 250 0,63 400 x x 

8 280 1,43 196 x  

9 280 1,37 205 x  

10 308 1,30 237 x  

11 294 1,30 226 x  

12 280 1,30 215 x x 

13 266 1,30 205 x  

14 252 1,30 194 x  

15 280 1,24 227 x  

16 280 1,17 239 x  

17 100 1,20 83 x  

18 170 0,66 259 x  

19 170 0,45 375 x  

20 170 0,35 492 x  

21 170 0,28 609 x  

  

For sets 17-21, extreme deviation from optimal process parameters was chosen. 

These would lead to the deep keyhole, balling and irregular single tracks. 8mm single 

tracks were produced for each parameter set, three tracks at 30μm and six at 50 μm. Each 

tracks' dimensions were measured from the top and at two cross-sections resulting in 18 

measurements each. 

2.2. Plate 2 Powder increments 

After analysing Plate 1, only two laser parameters (Table 1) were selected for the 

layer thickness variation (Table 2). The powder layer thickness was changed in 10 μm 

increments, as shown in Table 2. Each track was repeated 11 times, and 22 cross-sections 

were analysed for each laser parameter at each layer thickness. 

 

Table 2. Layer thickness parameters 

Thickness (μm) 0 30 50 60 70 80 90 100 

Plate 1 x x

Plate 2 x x x x x x x

2.3. Data acquisition and processing 

The sound and vibrations emitted from the process were recorded with a microphone 

and accelerometer, each sampled at 102.4 kHz and taking into account the Nyquist 

frequency, we obtained a frequency range from 0 to 51.2 kHz. Microphone – PCB 

378B02, sensitivity 50 mV/Pa, accelerometer – PCB 352A21, sensitivity 10 mV/g, 

hardware – NI CompactDAQ-9185 with sound and vibration input module NI-9250 were 
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used for monitoring. The data was filtered using a 1kHz high pass filter, and each set was 

cut and measured using the following six features; 

• mean frequency; simply the product of the frequency and its intensity divided 

by the total spectrum intensity 

• peak frequency; the frequency with the maximum intensity 

• power spectral density (calculated for 10kHz bands) 

• spectral centroid (SC); centre of mass of the spectrum  

• root mean squared (RMS); calculated by the square root of the arithmetic mean 

of the squares and indicates the energy in the signal or represents loudness 

• zero-crossing rate (ZCR); an indicator that reflects the fluctuations of a curve in 

a given time interval (smoothness). 

3. Results and Discussion 

After processing, the cross-sections of the tracks were analysed in two places. This 

variety allowed us to get a relatively large range of possible track shapes. From the top 

view, tracks were classified into four groups: irregular, balling, continuous and spatter 

or satellites, and two groups of internal defects such as pores and undercut  (Figure. 2).  

 

 

Figure 2: Top of 4 different shapes (d) and cross-sectional views of the single tracks; a - continuous, b -
balling, c - pore, e - pore and undercut. 

As a result, we obtained 189 tracks from plate 1 and 152 tracks from plate 2, which 

resulted in 680 measurements of the molten pool geometry. The plot on the top of Figure 

3 shows the correlation between the linear energy density (laser power/scanning speed) 

and the aspect ratio. As expected, more energy leads to a bigger melt pool. Also, here 

some data clustering in the shape of the track for the aspect ratio and energy density is 
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present. The dataset contains a variety of tracks with pores and undercuts and tracks free 

from defects.  

 

 

 

Figure 3: Aspect ratio vs energy density (Plate 1) and Aspect ratio vs layer thickness (Plate 2). Style of markers 
represent internal defect; 0 – defect-free, 1 – pore or undercut. 

 

Both sensors showed sensitivity even to the minor changes in process parameters. 

Many studies have shown that an acoustic signal carries a relatively large time and 

frequency domain information.  The average time per track for the various process 

parameters was about 10ms, meaning that, on average, 1000 points were recorded per 

track. That amount turned out to be enough to recognise differences in various track 

shapes and internal defects, as shown in Figure 4. The Short-Time Fourier Transform 

(STFT) calculates the frequency over time. It is represented on a plot of frequency against 

time, with the colour indicating intensity. Four different tracks for both the accelerometer 

and microphone recordings are shown to have apparent differences. Many studies use 

raw acoustic signals as an input for machine learning algorithms for clustering, 

classification and other implementations [20].  

To reduce the amount of data, speed up the computation and possibly increase the 

accuracy, we focused on the search for signal properties that correlate with the properties 

of the track. In the future, it is planned to use a similar approach, but applying for 
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complex build and analysing the signal by layers. The point of this work is a combination 

of a microphone and an accelerometer. Recent studies have shown the effectiveness of 

using a microphone in the monitoring process of LPBF, but also its disadvantages. By 

supplementing the acoustic signal of the microphone with measurements of the vibration 

from the melt pool using an accelerometer installed directly on the surface of the laser 

interaction with the material, we were able to increase the number of process signatures 

for establishing correlations.  

The images obtained after STFT can be used to classify or cluster data. The 

difference in the behaviour of frequencies when changing the process parameters is 

immediately visible. At this stage, we do not intend to use machine learning algorithms, 

so we investigated only the numerical characteristics of the signal. 

 

 
Figure 4: Typical STFT spectrograms for different energy densities: balling – 83, continuous – 400, 

irregular – 215, spatter – 609 J/m. Layer thickness 50 um. For each energy density, the microphone is at the 
top and the accelerometer bottom.  

 

The six signal features described in section 2.3 have been calculated for each track. 

Since each characteristic is distributed over time, we took the median and standard 

deviation for each track for comparison reasons. The combination of all measurements 

and recordings from the microphone and accelerometer is shown in Figure 5. It was 

observed that the spectral centroid of the microphone practically remains at 17 kHz, 

while the data from the accelerometer show that for the "unstable" modes (balling and 

spatter), the average frequency is much higher than for stable tracks (Figure 5). Also, 

tracks with irregular geometry have the most extensive deviations. The presence of pores 
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and undercuts in stable tracks can be attributed to a slight shift of the average frequency 

towards lower frequencies. A similar trend is observed for the peak frequency values. 

This trend can be traced quite clearly if we use the spectral centroid. The RMS is very 

sensitive to the presence of internal defects. For almost all track shapes, the scatter of the 

data increases for undercut and the average RMS value increases in the presence of pores. 

This is quite logical since this parameter is usually responsible for the loudness of the 

signal. ZCR represents the "smoothness" of the signal, which is typical for stable 

continuous tracks without internal defects. For the current experiment, these two are the 

most representative signal features. 

 

Figure 5: Boxplot for Spectral centroid and RMS of all tracks vs shape types. The box represents data between 

25th to 75th percentile, with the line being the median and dots outliers. 

 

Even considering the multiple repetitions, we face high volatility of signals, one of 

the reasons being the transient oscillatory motion of the melt pool [21]. This again proves 

that the laser powder bed fusion process is stochastic and requires constant monitoring 

and control. A more significant number of deviations are levelled by subsequent layers 

due to the transfer, but research shows that there is still a process of accumulation and 

the effect of stochasticity. This can also be seen in research employing rescanning before 
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depositing the next layer [2]. The process requires in-line process adjustment, which will 

be more efficient than using a constant energy input. 

For the entire dataset, we decided to check the Pearson coefficient correlation matrix 

(Figure 6). This calculation is more appropriate for linear relationships such as energy 

density and penetration depth. Nevertheless, some dependencies are present, for example, 

in the presence of internal defects, bandwidth and RMS for both types of sensors. The 

number of correlation coefficients from the data of the second plate shows significant 

sensitivity of the signal features to the layer thickness shift. This might be valuable for 

the detection of a lack of powder during the build. Correlations are present, and they 

rather have a nonlinear and multiparametric format, which requires complex models with 

regularisation of the given data, a more significant amount of data, and a combination of 

signal features. Complete data package including a spectrogram, process parameters, 

multiple quantitative characteristics of the signal should be acquired and fused for input 

to a complex algorithm.  

 
Figure 6: Correlation table of the entire dataset for Plate 1 and 2. 
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4. Conclusion 

In this research, we have demonstrated that a simple monitoring system composed 

of a microphone and accelerometer easily installed in the commercial machine allows us 

to determine the patterns of formation of laser melting anomalies such as spatter, balling, 

pores, and undercut during the laser powder bed fusion of single tracks.  

Obtained results showed that the combination of two acoustic sensors provides 

different acoustic signatures from the melt pool. The shift of the values of different 

acoustic signal features from both sensors relative to the melt pool geometry is 

statistically distinguishable.  

A diverse labelled dataset for single tracks and related acoustic features was 

obtained. Different track features (shape, porosity, undercut ) were linked to the acoustic 

signals. The correlation matrix from both plates shows this link.  

The current dataset will be expanded and used for the quality prediction model. 

Any of these methods can be used as part of an emergency stop of the entire process. We 

recognise that data from the acoustic emissions contain a large amount of unique 

information about the process, and when in combination with an optical monitoring 

system, diversifies the data for machine learning models. 
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