
Frequent and Automatic Monitoring of 

Resource Data via the Internet of Things 

Thomas Schmittab1, Pavani Sakaraya, Lars Hansona, Matías Urenda Morisb, Kaveh 

Amouzgarb 
a

 Scania CV AB, Smart Factory Lab 
b

 Uppsala University, Department of Civil and Industrial Engineering 

Abstract. The Internet of Things (IoT) offers potential for developing an intelligent 
and sustainable manufacturing system, allowing for better and more informed 
decisions that increase efficiency and cut down waste in production processes. The 
insights are generated from automatically collected data coming from machines and 
devices. While process data are already reported and support a close to real-time 
monitoring and evaluation of process efficiencies, data about resource consumption 
in manufacturing environments is more scarce but crucial for becoming more 
resource efficient. Through connected hardware and software applications, data 
from resource consumption of energy, water, and waste can be automatically 
collected. To achieve this, this study presents an IoT framework for monitoring 
resource efficiency in an automatic and frequent manner. Thus, the eco-efficiency 
and productivity of the process can be measured and integrated into the decision-
making processes by sharing the data with shop floor and production management 
personnel via dashboards. 
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1. Introduction 

In recent years, the concept of Industry 4.0 has become increasingly important, 

characterized by technologies such as Internet of Things (IoT), big data, and cyber-

physical systems (CPS), which are used to achieve productivity gains and higher profits 

[1, 2, 3]. The aim is an intelligent system, integrated vertically from machine to internet 

as well as horizontally from machine to machine along the value chain [4], that can 

predict and act on potential problems arising in production processes in real time [2]. 

Monitoring and coordination are possible via analysing information sourced from 

machines, embedded sensors, and actuators [4], while data collection and transmission 

between the devices are enabled through IoT [1, 3, 5]. 

Another major trend in the industry, accelerated by the sustainability crisis [6], is 

the growing attention to sustainable manufacturing through resource efficiency, 

providing advantages such as cost savings, independence of volatile resource prices, 

reputational improvements, and adaptations to consumer preferences [5]. Sustainable 

manufacturing (SM) is defined as the procedure of creating products and services 

through economically sound processes that minimize negative environmental impacts 
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while conserving energy and natural resources [7]. While scholars called for corporate 

environmentalism as early as 25 years ago [8], its relevance today is expressed by new 

regulations and international agreements. This is, among other things, highlighted by the 

European Union’s Green New Deal, promoting the development towards a green and 

digital industry with low-emission technologies and sustainable processes, and the 

United Nation member countries’ agreement on the Sustainable Development Goals 

(SDGs) [9, 10]. Numbers 9 and 12 of the SDGs concern “inclusive and sustainable 

industrialization” and “responsible consumption and production”, formulating the target 

of achieving “sustainable management and efficient use of natural resources” by 2030. 

The goal is to improve resource efficiency as well as tracking and reporting on energy, 

water, and material consumption via the reporting guidelines developed by the UN [11], 

thereby establishing a common way to collect, share, and report data about progress 

towards the SDGs. 

Despite its importance, few case studies so far focused on the application of 

emerging industrial technologies for eco-efficiency gains in production processes. 

Despite its potential, many companies struggle with inefficient, costly and time-

consuming data collection practices. This study aims to provide a framework on how to 

efficiently collect and integrate resource parameters such as energy, water, and waste 

from production processes into the decision-making process. in order to collect and use 

data on resource parameters such as energy, water and waste. 

2. Frame of Reference  

Recently, research has grown at the intersection of the two major trends of data-driven 

technologies and sustainable manufacturing development [1, 3, 12, 13], spurring the 

widening of the purpose of Industry 4.0. Having so far focused on data-driven 

technologies, the concept has recently been supplemented and extended by principles of 

social fairness and sustainability, called Industry 5.0. The new concept still aims to 

deploy the mentioned technologies to increase automation and flexibility, while 

developing these solutions in a human-centered way that adapts to the worker instead of 

the other way around, and deploying them for circularity and sustainability [14]. 

Conducting a systematic literature review, Jamwal et al. [13] found that 

technological solutions such as big data from shop-floor activities, IoT solutions such as 

connected sensors and machines that communicate data between systems through the 

internet, and machine learning to analyse and act on the large amounts of collected data, 

have become significant factors for achieving sustainable manufacturing [13]. This is 

supported by a literature study conducted by Andronie et al. [15], finding a great potential 

in similar technological developments, however stating a lack of practical applications 

of analytics of real-time data from IoT devices. Both studies suggest that optimization 

techniques through the stated means could help develop models for efficient shop-floor 

management, picturing a future state in which autonomous and self-optimizing actuators 

can steer production processes based on real-time analysis. Shrouf & Miragliotta [5] 

suggested a high-level framework for working with IoT to collect energy data from 

production processes, finding six achievable benefits from applying IoT. Jagtap et al. 

[16] found similar issues in the food industry regarding lack of data on resource use and 

waste generation on production-line level and introduced a practical framework for using 

IoT solutions to support real-time monitoring of waste, energy, and water in food 

production. 
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Despite previous research suggesting that Industry 4.0 holds great importance for 

sustainable manufacturing and pointing at shop-floor management to act as the crucial 

element for achieving eco-efficiency in manufacturing, case studies from the automotive 

industry are lacking and many challenges still unresolved. On the one hand, machines 

already constantly report productivity data about the process, as in the cycle time that it 

takes the machine to produce a task including operative and idle time, and throughput, 

specifying the number of products that a machine turns out in a certain amount of time. 

This is shared and used in an organization for, among other things, production planning 

and maintenance. On the other hand, several problems arise regarding information on 

resource consumption: 

● First, reports on resource consumption are only created a few times a year on a 

high factory level, leading to a lack of awareness of resource consumption and 

waste generation and thus of resource management practices [5, 16].  

● Second, it is time-consuming to collect the information on resource 

consumption of various parameters, among others energy, water, and waste, in 

manufacturing processes at machine and process level. The operational 

technology (OT) was often introduced several decades ago and is proprietary, 

making it harder and costlier to collect the information.  

● Third, even where information exists, it is often stored in different locations and 

hence difficult to access and is not digitally visualized to all employees who 

could draw insights from the data in order to affect resource consumption of 

processes. 

 

Consequently, despite companies from across the industry being already concerned 

with collecting data on resource consumption, its mostly used once at the end of the 

month for billing purposes, while its usability for precise process improvements on eco-

efficiency is low. In this context, IoT solutions can support frequent collection and 

monitoring of resource consumption in manufacturing environments [16]. This study 

aims to contribute to the area of data-driven sustainable manufacturing through a case 

study applied in the heavy duty and off-road (HDOR) industry. While the case 

company’s ambition towards more resource-efficient processes follows the global trend 

and aims to reduce energy, waste, and water consumption in all industrial operations, as 

shown in the study by Jagtap et al. applied in food manufacturing [16], other companies 

might have different parameters to investigate. Through the deployment of connected 

IoT hard- and software, so far mostly in use for maintenance purposes such as monitoring 

machines by streaming production data and hence not utilized to its full potential, a 

flexible setup can guarantee the collection of different parameters.  

To achieve this, this study presents and discusses an IoT framework for monitoring 

and visualizing resource efficiency, in this case on water, energy, and waste, in an 

automatic and frequent manner. This allows measuring and integrating eco-efficiency 

with the productivity data of the process into the decision-making support, by sharing 

the data with shop floor and production management personnel via dashboards.  
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3. Method 

The study’s methodological approach follows the Design Science Research, addressing 

research through the building and evaluation of artifacts designed to meet the business 

need [17]. Through this, an appropriate and effective solution, e.g. a hardware or 

software framework, can be designed to solve the identified problem. 

This study stems from a cooperation project between the case company, in the 

following referred to as ‘the company’, in the HDOR industry and the academy, using 

inductive reasoning due to a scarcity of previous studies. Both quality engineers and 

environmental coordinators from the company took part in project discussions and 

helped define the status quo in the company. The innovation arena Smart Factory Lab 

was used in the case company to develop and test new frameworks, avoiding the risk of 

having to interfere with production-critical processes. The use case in the lab comprises 

a process that includes the parameters energy (kWh), water (l), and waste (kg). The 

environmental data were collected by applying smart sensors and devices designed to 

interact with gateways and servers to network with an IoT framework that decodes, 

forwards, and stores the data signals. The developed framework can then, once evaluated, 

be implemented at other processes in the production environment. 

 

 

 
Figure 1: IoT-enabled framework for monitoring resource efficiency in manufacturing (inspired by Jagtap et 

al. [16]).  

 

T. Schmitt et al. / Frequent and Automatic Monitoring of Resource Data78



3.1. Data collection 

Data about consumption of the three parameters energy, waste, and water served as the 

main data source. Since most machines today lack the ability to report data on resource 

consumption, this required the integration of measuring alternatives. By adding specific 

sensors tailored to the process, the existing operational technologies were retrofitted to 

report missing data. Meter-Bus (M-Bus) sensors reported data on a building level, while 

LoRaWAN energy sensors from the company mcf88 together with a gateway that links 

the end devices to the network server collected data every minute on a machine level. To 

measure the waste consumption at the source, the following components were selected: 

an industrial floor waste scale from the company Elicom Electronic, highly stressable 

and spacious for industrial recycling containers, and a RaspberryPi used as a gateway. 

Regarding water metering, wireless LoRaWAN water meters from the company 

Quandify communicating via a LoRaWAN protocol to the gateway were chosen and 

mounted onto the lab’s pipe. 

3.2. IoT architecture 

Several software systems were needed to continuously and automatically collect the 

signals generated by the hardware and report them to the gateways. The chosen software 

setup includes open-source IoT solutions, namely Node-RED, InfluxDB, and Grafana, 

after both open-source and commercial IoT frameworks with Amazon Web Services 

(AWS) had been tested. The IoT platform Node-RED supports the connectivity of the 

sensing devices with its various protocols and networks and processes the data. The 

generated data were stored in the database InfluxDB, and the dashboarding tool Grafana 

was used to retrieve the stored data and visualize them in a user interface (UI). 

Furthermore, the dashboard can analyse and share the data to all employees involved, to 

pass on data based on the users’ needs. 

3.3. Integration for decision-making support 

With the sensing solution and IoT architecture in place, resource consumption can be 

monitored, improved, and taken into account during the continual improvement 

processes. Solution processes in production today are often based on visual reports from 

engineers summarizing production data. The environmental dimension outlined in this 

paper was visualized in a dashboard, receiving automatic and regular data updates and 

showing trends of resource consumption over time. 

4. Case study result 

4.1. IoT architecture 

Several different IoT architectures consisting of three, four, or five layers are frequently 

outlined in literature [18, 19]. At the physical level, a device or perception layer uses 

smart sensors to translate information from the physical environment into computational 

form in the shape of data signals, communicating the data to the local server via 

gateways. The gateways are part of a network layer providing the network through which 
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the sensor data are transferred in a specific format. From there, the data go to a service 

or processing layer that is able to store, analyse and process high quantities of data, based 

on user requests. A content or application layer then gives feedback to the user mostly in 

the form of visualizations or calculations. For this study, an IoT architecture based on 

four layers is used: sensing, network, processing, and application layers. 

Node-RED is an open-source browser-based IDE (Integrated Development 

Environment), using pre-built modules to achieve connections from operational 

technologies such as PLCs and sensors to information technologies (IT) such as the 

outlined softwares like InfluxDB. This OT/IT connection is made by using different IoT 

protocols such as MQTT and LoRaWAN. The flow nodes can parse the data from one 

format into another, more usable one. From there, the messages are forwarded and stored 

in InfluxDB, a time-series database suited for large and time-stamped IoT data. The 

dashboarding part is done with Grafana, a browser-based data visualization application 

that offers several advantages. First, it can connect to different databases. Second, it 

allows the user self-service functions such as filtering, aggregating, analysing, and 

visualizing as well as automatic updates on the dashboards in regular intervals.  

This setup (Figure 2) removes the need for manual data collection and updates and 

is flexible to allow user-based designs, not overwhelming the user with unnecessary 

information. To ensure a secure connection, all applications are hosted on an on-premises 

server in the case company. 

 

4.2. Energy monitoring 

 

The energy data packages regarding the building’s energy consumption are generated by 

a Meter-Bus (M-Bus) energy meter connecting to a M-Bus converter that sends the data 

over a TCP protocol to a server forwarding it to a proprietary SQL database. Node-RED 

connects to the SQL database to receive hourly energy consumption values in kWh and 

forwards them to InfluxDB. On the other hand, the LoRaWAN energy meters attached 

to the machines in the assembly line can report data every minute. Linked via the 

LoRaWAN gateway to a network server, where its connectivity is managed and an 

Application Programming Interface (API)) exposed, the sensor signals can be queried 

from Node-RED. There the data are decoded from hexadecimal into Base64 format and 

forwarded to InfluxDB. 

 

4.3. Water monitoring 

 

The architecture for the LoRaWAN water meters is similar to the LoRaWAN energy 

meters, where the gateway connects the end devices to a network server that receives the 

data packages. At the server side, an API is exposed and allows for backhaul connectivity 

for data processing through Node-RED. In contrast to the energy meters, the water meters 

aggregate data and forward hourly values to the server in order to reduce battery drain. 

 

4.4. Waste monitoring 

 

Waste data are streamed from the scale via cabled RS232 serial communication to a 

single-board computer (SBC), in this case a RaspberryPi. In the SBC, a python script 

runs as a TCP server that connects with and listens to a socket and receives the waste 

data. From there, the received messages are parsed and published via MQTT to a broker 

to which Node-RED can subscribe and continue the data processing. 
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Figure 2. Four-layered IoT architecture used for gathering resource data. 

4.5. Integration into decision-making tool 

The resulting dashboard comprises the parameters energy, water, and waste, visualized 

in line graphs over time to reveal consumption trends (Figure 3). Energy from a machine 

level and waste get updated every minute, while energy on building level and water data 

are aggregated and reported on an hourly basis due to the suppliers’ sensor solution. The 

data can be visualized in different graphs and periods, depending on the user’s needs. 

This allows for trend analysis to understand how many resources a given machine or 

station consumes in a certain time. Aggregated values (such as total energy consumption) 

can complement the dashboard, to show concise information for gross assessments. 

5. Discussion 

Previous research as well as technological developments have highlighted the potential 

of using IoT solutions for sustainable manufacturing [13, 15], however there are scarce 

studies linking the two and evaluating the outcome in practice. While Jagtap et al. [16] 

studied a similar problem applied to food manufacturing, no studies were found in the 

automotive industry. This paper is one of the first to present a framework that allows 

manufacturing companies to collect resource parameters and use it in their decision-

making, through the means of IoT technologies. 
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Figure 3. Dashboard including energy, waste, and water data collected during two days.dd 

5.1. Discussion of results 

Preliminary results show the strengths of IoT solutions for achieving eco-efficiency 

evaluations in industrial decision-making processes. While energy is measured today on 

a building level every hour, water and waste data are more scarcely collected at the 

company. The outlined IoT framework allows for automatic and more frequent data 

collection of these parameters, based on the needs of the users. This way of automatic 

data gathering is time-saving and eliminates the need for manual collection. The resource 

data can be obtained both from a detailed machine level and from an aggregated factory 

level, allowing for the identification of main consumers in processes. In a subsequent 

step, the environmental data can be combined with productivity parameters to create the 

link between production output and resource consumption. This will result in decision 

making taking both productivity and environmental information into account. The data 

collection and analysis over time can provide understanding of normal and abnormal 

behaviour of the process. This information allows the production personnel to take better 

informed decisions and manually optimize production processes. 

However, monitoring resource efficiency is not effortless. New and wireless IoT 

technologies such as LoRa are constantly emerging, rendering the search for adequate 

hardware time-consuming. Each alternative promises unique advantages, yet testing and 

evaluation need to be done to understand the implications of each technology for the 

company and the use case. The protocols and networks offered show differing properties 

that need to be weighted depending on the usage. For example, the used water and energy 

meters communicate through the LoRa network, advantageous with its wide area 

network coverage and economic and wireless hardware, but inconvenient with its low 

bandwidth restricting frequent data trafficking. On the other hand, MQTT is an easy-to-

use, light protocol with fast delivery time but showing drawbacks in scalability. Also, 

the hardware configurations can differ from supplier to supplier, as in this study’s case 
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one supplier programming the water meters for hourly reporting, another the energy 

sensors for every minute. 

Since several sensor solutions deployed in this project are found to communicate in 

different data formats, through different protocols, and at different granularities, this 

compatibility issue required the development of a suitable data integration framework. 

The framework needs to allow connections from all kinds of existing OT, such as 

described sensors and programmable logic computers (PLCs), to a common platform, 

database, and dashboard. To do this, numerous open-source solutions are available and 

prove a viable option for industrial usage. Here, flexible integration with other tools and 

free use are main advantages while on the downside some functions and documentation 

as well as service support are found sparse or lacking. For example, tools such as Grafana 

allow for flexible dashboard customization and basic statistical calculations that provide 

deeper insights into consumption patterns, while the user experience (UX) part is 

improvable. The commercial platform AWS, on the other hand, was found to be an 

advanced and versatile tool also able to connect different equipment and to analyse and 

visualize the information. However, costs and user-friendliness are downsides, since the 

device onboarding and the IoT setup need to be done by personnel with AWS and at least 

basic programming knowledge. 

For these reasons, it is good to set measurable criteria for the hardware as well as 

the software choices, based on the needs of the company and the use case. For the purpose 

of this study, the hardware was chosen based on several criteria: quick setup, low 

maintenance, high reliability, low cost, wireless connectivity, and customizability. 

Regarding software, easy device onboarding by the user, cyber and data security, low 

maintenance, good integration with other software, and customizable user interface were 

the criteria. This led to the use of low-cost hardware and free software that allow 

companies to test the proposed solutions without having to invest large amounts of 

money and time. Additionally, the three software tools Node-RED, InfluxDB, and 

Grafana can be regarded as building blocks, permitting for substitutions of each of these 

tools. Commercial solutions offering full-stack frameworks like AWS or Microsoft 

Azure, on the other hand, restrict companies while demanding more effort and higher 

investment. Hence, the outlined framework is specific to the case company’s needs, but 

allows for easy testing for varying applications within different companies. 

Finally, case studies like the one presented stand or fall with the support from 

different employees in the company. Especially during the problem definition phase at 

the beginning of the project, support and knowledge sharing from employees is crucial. 

The company studied had already certain roles defined that were predestined to offer 

support for this study, however other companies might not own these resources or 

employees might show more reluctance. Furthermore, the laboratory used for testing the 

framework has helped in accelerating the testing and development process of this study. 

Companies needing to test on ‘real’ production will face additional complications. 

5.2. Discussion of method 

The proposed IoT framework consisting of different sensors and free software solutions 

was chosen on the basis of the listed criteria. These tools depict only a popular fraction 

of the available solutions, as the market for IoT hard- and software is vast and a 

comparison between all the alternatives would be interminable. Since each of the 

proposed layers can be substituted, other types of solutions may be chosen and compared 

to the results of this study. 
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5.3. Discussion of future research 

Once consumption behaviour is better understood, a subsequent step could be to merge 

resource and productivity information into one decision-making tool for the user. With 

defined KPIs on both resource and process efficiency, alerting features in software such 

as Grafana can be used to notify when deviations occur. Having said that, the data 

visualization side poses challenges, where more and more data introduced to the user 

(who is already concerned with large amounts of data) need to provide insights that are 

intuitive to understand. For this, a UX study investigating how the information is best 

displayed could follow. In a later stage, the systematic collection and data processing 

could allow for using mathematical or metaheuristic optimization methods in order to 

improve both of the seemingly contradictory goals of productivity and resource 

efficiency. 

6. Conclusion 

In the course of this paper an IoT framework has been developed that allows for flexible 

and automatic collection of resource data from production processes. Further, the 

integration of data on energy, water, and waste into a decision-making tool for production 

personnel is presented. The developed IoT framework can lead to a better understanding 

of the processes, in order to allow manual optimization. The newly collected and 

processed data can be analysed to generate key performance indicators (KPIs) through 

which better production planning can be realized. With the sensing solution and IoT 

architecture in place, the KPIs can be monitored, improved, and taken into account 

during the continuous improvement process. This will expand the traditional decision-

making process into a combination of productivity and environmental KPIs and support 

organizational reporting and learning on resource efficiency.  

To achieve this, the integration of data signals from hardware to software in the IoT 

framework of this study requires customized solutions, and choosing the right 

configuration is vital. An integral part of IoT technologies, there are multiple different 

IoT protocols available, each one showing different advantages and capabilities suitable 

for various needs based on the IoT deployment. Equally important is the deployment of 

adaptable software that allows the wiring together of the different hardware devices. This 

IoT framework can be established as one of the first standards for companies where 

traditional process efficiency is aimed to be combined with resource efficiency. 
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