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Abstract. Deep learning has been widely used in fault diagnosis, especially the 
convolutional neural network (CNN). However, traditional CNN models usually use 
single-scale kernels to extract features, which ignores the multiscale features of 
input data. This article develops a novel residual neural network named multiscale 
feature fusion deep residual networks for fault diagnosis of aerostat. The designed 
multiscale feature fusion block (MFF Block) realizes automatic extraction, fusion 
and compression of multiscale features. The series connection of multiple MFF 
Blocks makes the proposed model able to extract deeper and wider features from 
raw signal segments. Then a multiscale pooling layer is developed to extract the 
most effective features for accurate fault diagnosis. The proposed model is evaluated 
on an exclusive aerostat strain signal dataset. The comparison results illustrate that 
the proposed model achieves superior diagnostic performance than several popular 
models. 
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1. Introduction 

In practical engineering applications, the failure of equipment is difficult to be found in 

time, which is a serious threat to the safety of industrial production [1]. Because of the 

complex work environment and long-running time, unexpected faults occur frequently, 

which might cause a tremendous amount of loss and great maintenance cost. Thus, it is 

necessary to implement the in-time and precise fault diagnosis for industrial equipment.  

In traditional fault diagnosis, the consensus is to get valuable information through 

signal processing methods such as filtering and demodulation. Marco et al. [2] applied 

the short-time Fourier transform (STFT) in the feature extraction for damage detection 

and use the sum of STFT coefficients as the damage index. However, such methods  

have quite high requirements for professional knowledge and signal processing 

experience. 
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With the rapid exaltation of computer performance and the booming of industrial 

big data, data-driven fault diagnostic methods have been widely studied [3]. Among 

these methods, machine learning prevails because it is based on sensor data rather than 

particular signal processing models or signal patterns. For example, Yuwono et al. [4] 

combined particle swarm clustering algorithm and hidden Markov model, and achieved 

remarkable diagnostic performance on rolling bearings. However, machine learning 

based models rely heavily on manual feature extraction methods. 

Deep learning [5] has become popular because of its ability in mining and  

capturing deep level information from high dimensional data, which can get rid of the 

manual feature extraction. Deep learning based methods such as deep neural networks 

(DNN) [6], convolutional neural networks (CNN) [7-8] and deep auto-encoder [9] have 

shown their prominent feature extracting capabilities. As deep learning attracts more 

attention, a lot of excellent models have been applied in fault diagnosis. For example, 

Zhu et al. [10] proposed a model named stacked pruning sparse denoising autoencoder, 

which can reduce information loss during training iterations and achieve higher 

diagnostic accuracy. However, as networks get deeper, the degradation problem [11] 

occurs. If the deep networks are just simply stacked layer by layer, the training loss will 

stop declining because the identity mapping is hard to be represented by traditional deep 

networks. 

To address the aforementioned problems, a novel multiscale feature fusion deep 

neural networks (MFF-DRN) is proposed for the fault diagnosis. In the proposed model, 

the designed multiscale feature fusion block (MFF Block) realizes automatic extraction, 

fusion and compression of multiscale features. Then, the series connection of multiple 

MFF Blocks makes the proposed model able to extract deeper and wider features from 

raw signal segments. Finally, the multiscale pooling layer extracts the most effective 

features for accurate fault diagnosis. 

The main contributions of this paper are concluded as follows. 

(1)An end-to-end model derived from CNN is proposed for industrial equipment 

fault diagnosis, which could efficiently extract features from one-dimensional raw 

signal segments without manually extracting features or signal processing.  

(2)A novel multiscale feature fusion block (MFF Block) is designed, which is 

capable of automatically extracting, fusing and compressing multiscale features. 

This structure realizes efficient multiscale feature extraction with fewer filter 

channels. Additionally, a new multiscale pooling method is proposed to broaden 

the model’s receptive field. Meanwhile, residual learning is adopted to heighten 

the model’s learning ability. 

(3)The proposed MFF-DRN is evaluated on an aerostat strain signal dataset. A 

series of multifaceted comparisons with some popular models powerfully manifest 

the superiority of MFF-DRN. 

The remainder of this paper is organized as follows. Section 2 introduces the 

proposed model in detail. Section 3 illustrates the datasets and experimental validations. 

Finally, section 4 concludes this study. 
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2. Proposed Network 

2.1. Residual Learning Module 

The one-dimensional convolutional neural network (1-D CNN) is derived from 

feedforward networks. The strategies of local connection and weight sharing can greatly 

reduce the parameters of CNN models. A classical CNN mainly consists of convolutional 

layers and pooling layers.  

To fetch information from complex data, convolutional neural networks are 

becoming deeper and deeper. However, there lies a degradation problem in a deep neural 

network: As the network becomes deeper, its training accuracy saturates or even declines 

[11]. To address the aforementioned problem, residual learning was proposed by He et 

al. [11], which can be defined as follows: 

               
                                                 H X F X X                                                                      (1) 

Where H  represents the output function, F  represents the residual function and 

X  denotes the input data.  
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Figure 1. Residual Learning Block Figure 2. Structure of Multiscale Pooling Block 

As shown in Figure 1, a residual block (ResBlock) that mainly consists of two 

convolutional blocks (ConvBlocks) is built for feature extraction. The ConvBlock 

consists of a convolutional layer, a batch normalization layer (BatchNorm) and a ReLU 

activation layer. The batch normalization layer can address the internal covariate shift 

problem during training iterations by normalizing the input data [12]. 

2.2. Proposed MFF-DRN Architecture 

The MFF-DRN takes signal fragments as input, which consists of an initial ConvBlock, 

three MFF Blocks, a multiscale pooling layer formed of three multiscale pooling blocks 

(MSPs) and a classification layer using softmax function. 

Each MFF Block consists of three ConvBlocks, three ResBlocks mentioned in 

Figure 1 and a bottleneck layer whose kernel size is 1×1 (1×1 Conv). The only difference 

among these ConvBlocks is that their kernel sizes are different, and so are ResBlocks. 

To get multiscale features, feature maps that output from different Resblocks are 

connected through the concatenation operation. The important function of 1×1 Conv is 

compressing the feature maps, which can reduce feature map channels without 

information loss. These components make the MFF Block able to extract and fuse 
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multiscale features so can improve the mapping ability and classification accuracy of 

MFF-DRN. Besides, channels of feature maps generated in the proposed MFF-DRN are 

much fewer than in other CNN based models during training, because the application of 

MFF Blocks reduces redundant features. 

Then a multiscale pooling layer is constructed to extract the most valuable 

information from features output by the MFF Block. As shown in Figure 2, each MSP in 

the multiscale pooling layer consists of a bottleneck layer and an average pooling layer. 

In each MSP, the channels of bottleneck layers and pooling kernel size are set to be 

different to extract valuable features at different scales.  

3. Model Evaluation 

To evaluate the effectiveness and the universality of the MFF-DRN, a case on strain 

signal dataset gathered from the surface of an airship model is studied. 

Besides accuracy, the macro F1-score F is used as the other evaluation index to 

better evaluate the model performance. Whose definition is as follows: 
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Where 
i

TP  denotes the number of samples that are correctly classified as class i, 

i
FP  denotes the number of samples that are falsely classified as class i and 

i
FN  

represents the number of samples that actually belong to class i but are classified as others.

i
p ,

i
r ,

i
f  denotes the precision, recall and micro F1-score of class i, respectively. 

Therefore, macro F1-score F is a comprehensive index for classification. 

All models in the case studies are implemented by Python 3.7 with Pytorch 1.7 and 

run on Windows 10 with a NVIDIA GTX 1070 GPU. 

3.1. Data Description 

In the case, strain signals collected from the surface of the airship model are used to 

verify the validity and generalization of the model. The dataset is derived from the 

vibration and displacement signals of the airship surface excited by sound, which are 

collected by strain sensor. The experimental device is shown in Figure 3, The surface of 

the airship model is made of flexible composite material, which is composed of a load-

bearing layer and a sealing layer. 
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Figure 3. Overview of strain signal acquisition devices for airship model 

During each signal acquisition, an air compressor was used to maintain the airship 

pressure at 5kPa to simulate the actual working condition of the airship. A speaker close 

to the airship surface was used to play 200Hz fixed frequency sound signals to stimulate 

the vibration of the model. The speaker power is 20W. The carrier frequency of the sound 

is 44kHz, and the sensor acquisition frequency is 2kHz. As shown in Figure 4, the 5mm 

transverse slit defect (F1) and cross defect (F2) are constructed at the mark in the figure, 

which are too small to be seen with the eye. The distance from the sensor to the defect is 

within 10cm. The signal acquisition experiments in various states have been repeated 10 

times, the signal collection duration is 50s in the healthy state and 20s in the defective 

state, so as to construct an unbalanced airship surface strain dataset.  

 

Figure 4. Relative location of defects and sensors 

The entire preprocessing procedure is illustrated in Figure 5. The signals are split 

into isometric signal segments to get more samples for model training. To avoid noise 

and disturbance at the beginning and end of the raw signals, the first one-tenth and last 

one-tenth of the original signal are cut off. The length of signal segments is set to 5120, 

and there is no overlap between adjacent signal segments.  
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Figure 5. Data Preprocess Schematic Diagram 

Then, the min-max normalization process is applied on each signal segment to 

accelerate the model training, which is defined as follows: 

min( )

max( ) min( )

X X
X

X X







�   (3) 

Where X  denotes the signal segment, max( )X  denotes the biggest value in X  and 

min( )X  denotes the smallest value in X .  

Finally, a dataset including 10,944 signal segments is constructed for fault diagnosis. 

With the samples shuffled, 80% of these segments are selected for training set and the 

remaining 20% are selected for testing set. 

3.2. Results Comparison and Analysis 

In this subsection, the DNN, CNN and DRN-3 (a deep residual network whose kernel 

size is 3), DRN-7 and DRN-11 are used to be compared with the MFF-DRN. Settings 

for the training of all models are as follows: the number of epochs is set to 40, the learning 

rate is 0.001; the Adam [13] optimization algorithm is used to update models’ 

parameters; the batch size is set to 16; the L2 Regularization is used in convolutional 

layers to prevent overfitting [5], its weight is set to 0.0001. All models are tested on the 

same testing set and the testing set will be re-selected after an experiment. The results 

are presented in Figure 6 and Table 1. 

 

Figure 6. Diagnostic Accuracy Comparison of Five Independent Experiments 
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Table 1. Experimental results of MFF-DRN and other models 

Model Max Acc Min Acc Mean Acc SD Mean F 

DNN 80.27 77.66 79.01 1.08 73.89 
CNN 85.29 83.69 84.58 0.64 81.22 

DRN-3 83.01 79.12 80.91 1.75 74.31 
DRN-7 90.09 86.80 88.45 1.28 85.46 
DRN-11 91.05 88.35 89.50 0.98 84.37 

MFF-DRN 92.05 90.27 91.17 0.63 88.13 

In Figure 6, The accuracy of MFF-DRN was the highest in each experiment, and its 

accuracy was the most stable among all the models. TABLE 1 shows the numerical 

results. The mean accuracy and mean macro F1-score of DRN-7 and DRN-11 are higher 

than DRN-3. The standard deviation of CNN is much smaller than other DRNs. The 

performance of MFF-DRN is the best for all indicators. The experimental results strongly 

prove the superiority of MFF-DRN in the classification of surface defects of the aerostat. 

4. Conclusion 

A novel MFF-DRN model is presented, which directly extracts features from signal 

segments. Firstly, the convolutional and residual learning blocks of different scales are 

developed. Then, the channel concatenation operation is used to connect different scale 

features and the application of bottleneck layers are used to fuse and compress features. 

Additionally, a multiscale pooling layer composed of bottleneck layers and average 

pooling layers is developed to further compress features. Deep learning tricks such as the 

batch normalization method, the Adam optimization algorithm and the L2 regularization 

are used to improve the diagnostic performance. The aerostat strain signal dataset is used 

for model validation. Popular models including DNN, CNN and DRNs are applied for 

comparison. The MFF-DRN outperforms these models on the dataset, which shows the 

excellent fault classification ability of MFF-DRN on the unbalanced dataset that based 

on real defects.  

In the future, the denoising components will be developed and embedded in the 

model for fault diagnosis on heavily noisy signals. Furthermore, model distillation and 

pruning operation will be studied to simplify the structure and accelerate model learning. 
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