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Abstract. In this paper, lattice Boltzmann model is used to simulate a class of  

nonlinear fuzzy wave-like equations with spatial variable coefficients. we recovers 

the fuzzy wave-like equations by designing the equilibrium state distribution 

function and using the Chapman-Enskog multi-scale technology. Theoretically, it 

proves that the computing model is compatible with fuzzy wave-like equations. 

And based on this, the author further verifies the feasibility and  effectiveness of 

the constructed lattice Boltzmann model by using numerical examples. 
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1. Introduction 

The lattice Boltzmann method (LBM)[1-2], as an effective numerical approach, has 

achieved success in simulating some complex fluid flows. Recently, LBM has been 

extended successfully to simulate some nonlinear evolution equations(NLEEs), such 

as , KdV-Burgers equation with variable coefficients[1], Fokker-Planck equation with 

[3], a class of convection-diffusion equations with variable coefficients[4], generalized 

Gardner equation with time dependent variable coefficients[5-6] and so on.  

Unlike traditional macroscopic numerical method that directly discretize the 

control equations in time and space, LBM is a mesoscopic numerical calculation 

method. The LB equation is based on a basic discrete velocity dynamics equation, 

which includes particle collision and propagation, these two processes can clearly 

restore various macroscopic physical phenomena. We note that the model in references 

[7] can be used to solve the Navier-Stokes and nonlinear convection-diffusion 

equations,  In references [8] give two complementary lattice Boltzmann models that 

asymptotically reproduce solutions of nonlinear systems are derived by the CE method. 

In this paper, CE analysis method is used to obtain the macroscopic fuzzy wave-

like equations. We assume the Knudsen number   as the time step t . Based on the 

previous works, we develop a LB model for a fuzzy wave-like equations with variable 
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coefficients. Here, we consider the 1+1 dimensions wave-like equation which can be 

written as the following form. 

    , ,
tt

U p x U F x t k   (1) 

 

Eq.(1)  can describe earthquake stresses and non-homogeneous elastic waves in soils. 

In this equation, U is the macro variables, the coefficients  p x  is analytic function of 

space x ,  , ,F t x k  is source term and   is the laplacian. 

This paper is organized as follows: In Section(2), It proves that the microscopic 

lattice Boltzmann equation is compatible with the macroscopic equation. In Section(3), 

We use LBM to do some numerical experiments on variable coefficient fuzzy wave 

equations. Finally, we plan to summarize the whole article and give the steps to use the 

LBM method to solve partial differential equations in Section(4). 

2. The Lbgk Model for the Fuzzy Wave-Like Equations 

In this work, the single-relaxation-time BGK model is considered. The evolution 

equation of the SRT-LB model reads, 
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(2) 

where

e is the lattice speed and  is the dimensionless relaxation time,  txf ,


 is 

the distribution function of particles,  txf eq

,


is the local equilibrium distribution 

function of particles,  ktxF ,,  stands for source term with variable coefficient, q is 

the number of grid speeds, Respectively. 

We define the macro parameter v as the following form, 
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The Chapman-Enskog expansion is applied to  txf ,


 , we have 
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at the same time, we expand the time term, space term, and source term by CE, we can 

get, 
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We directly use Taylor expansion for the left term of Eq.(2) , 
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where 
1

1, 1
, .

t t i
D c D c

  
        Substituting Eqs.(4), (5) into Eq.(6), we 

can obtain, 
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Based on the fact that 0.5  [4], Eq.(8) reads
 

 
 0

,         q=0,1, q-1.
eqf f

 
 � (10) 

With the help of Eq.(8),we can rewrite Eq.(9) as 
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From Eqs(3), (4), and (10) ,we have, 
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(12) 

in order to restore the macro Eq. (1), we make the following constraints on the 

equilibrium function, 
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summing Eq.(8) over  and using Eqs.(3), (12)and (13),we can obtain, 

 
   q-1 q-1
0

0 01 1

, ,

,

F x t kv
c f

t x q
 

  

  
  

   
   

(14) 

similarly, summing Eq.(11) over  ,and using Eqs.(3), (12) and  (13), 
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according to Eqs.(3), (11) and (12), we have  
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substituting to Eq.(16) into Eq.(15) yields,  
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by taking 
2

.(14) .(17)Eq Eq    , 
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(18) 

Eq.(18) is the same as Eq.(1) in mathematical form. Based on Eq.(3), (14), The 5-

bit equilibrium function we constructed is, 

Z. Zhang and J. Dong / Numerical Simulation of Fuzzy Wave-Like Equations 749



 

 

 

 

 

 

 

 

 

 

0 2

1 2 2

3 4 2

5
,

4 0.5

2
,

3 0.5

.
24 0.5

eq

eq eq

eq eq

P x u
f v

c t

P x u
f f

c t

P x u
f f

c t








 

 



 
 


   

 

 
(19) 

For the item u
t

v  ,we have 
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Remark: In Eq.(18) ,  p x  and  P x satisfy:

       , .p x p x dx P x p x dx    

3. Numerical Simulation 

In this section we do some numerical experiments, and use the following error 

indicators to verify the effectiveness of our model. The non-equilibrium extrapolation 

scheme proposed by Guo et al [9] is used for the boundary treatments. 
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3. The root mean square error  
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4. The global relative error 
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Example   For  p x x ， Eq.(1) becomes 

    2
, , ,

tt xx
U t x xU t x kx    

with the initial conditions    2
0, ,     0, 1 ,

t
U x cx U x  where  1,1x  ,

 0,1t , ,k c are arbitrary non-negative constant . The exact solution is[10] 

  4 2 2 2 21 1
, kxt kx t .

12 2
U x t cx cxt t    

 

We take 1k c  , table 1 shows the numerical results of  L


 , 
2

L , RMS , 

GRE , CPU at different moments. Figure 1(a) shows the comparisons of the 

numerical solutions and exact results where 0.1x  , 0.001t  , 1  , figure 1(b) 

shows the image of the LBM results in three dimensional space.  

Table 1. Errors of the model for Example  at different time 

t  

L

 
2

L
 

RMS
 

GRE
 s)    times(CPU

 

4.0t 0.2233 0.3286 0.0327 0.0029 0.1834 

6.0t 0.2524 0.3188 0.0317 0.0027 0.1823 

8.0t 0.2919 0.3206 0.0319 0.0025 0.1747 

0.1t 0.3418 0.3490 0.0347 0.0018 0.1819 

Z. Zhang and J. Dong / Numerical Simulation of Fuzzy Wave-Like Equations 751



 

 

 

 

(a) (b)

Figure 1.  (a)Numerical result and analytical solution at t = 0.4, 0.6, 0.8,1.0 

(b)The flowchart of our numerical simulation procedures 

4.Conclusion 

This paper studies the lattice Boltzmann model of a class of generalized fuzzy wave-

like equations with spatial variable coefficient. Firstly, the Eq.(1) is established by 

selecting the balanced distribution function. The D1Q5 lattice Boltzmann model is used 

to carry out numerical simulation experiments on different forms of fuzzy wave-like 

equations. Secondly, it is proved that the lattice Boltzmann model is compatible with 

the macroscopic equation. Finally,  The model is extended to higher-dimensional 

variable coefficient fuzzy wave-like equations, therefor, the present model may be 

more useful in the study of such problems. 
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