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Abstract. Droppers are key components of high-speed railway overhead catenary 
systems, which are exposed to the external environment and are prone to breakage 
faults due to the impact of wind force and the pantograph on moving trains day after 
day. How to identify dropper breakage or relaxation faults through acceleration 
signals installed in the carrier cable and contact wire is a challenging problem. In 
this study, the experimental section of the Lanzhou-Xinjiang high-speed railway 
was simulated on the basis of the bow-network dynamic simulation model, in which 
the overhead catenary system was subjected to the force of pulsating wind alone or 
pulsating wind and the pantograph at the same time. In the experiment, we collected 
10 channel signals from five acceleration sensors when two droppers were normal 
or broken. We established a 1D-CNN model of four categories and then determined 
the hyperparameters of the deep network structure and the important parameters of 
the network optimization scheme through the Bayesian optimization algorithm. 
Furthermore, we selected the lowest sensor number to identify dropper fracture 
faults by a large number of experiments according to mechanics principles. The 
experimental results show that the proposed methods have a higher identification 
accuracy rate, recall rate, and robustness than the traditional artificial feature 
extraction approaches. Therefore, the detection methods proposed provide an 
effective way to identify high-speed railway catenary dropper faults on the basis of 
acceleration sensors. 

Keywords. Overhead catenary system, dropper, accelerometer, convolutional 
neural network, fault detection. 

1. Introduction 

The overhead catenary system (OCS) is an important instrument for ensuring stable 

power supply for electric locomotives. Such systems work in the open air and are prone 

to breakage faults caused by factors such as the external environment, climate, and the 

impacts of the train pantograph and the wind from day and day [1]. In particular, the core 

component of the OCS, the dropper, plays a role in fixing the contact wire by connecting 

the carrier cable. Under the action of stress, it is prone to breakage failure, which affects 

the quality of the bow-net flow and threatens the safety of train operation. Figure 1 shows 

a scene of the over-head catenary system, and the dropper in the red box is slack and 

bears no force. For example, there were as many as 60 dropper breakages on a certain 
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railway line in 2011. Therefore, the online monitoring of the working status of droppers 

to find their failures in a timely manner is a powerful measure to ensure OCS safety. 

 

Figure 1. The dropper in the red box is slack and bears no force in a scene of the overhead catenary system. 

Currently, in order to ensure train safety, OCS maintenance is mainly carried out by 

on-site inspection, manual video browsing of the 2C system, and picture verification of 

the 4C system. These methods are inefficient, easily miss defects, and costly. Therefore, 

online detection of dropper failures is a technical problem that needs to be solved 

urgently by the railway department. 

In recent years, researchers have proposed a variety of methods for the detection of 

catenary defects. In general, they can be divided into contact and non-contact detection 

methods. The non-contact method uses image recognition technology to find the dropper 

fault from visual inspection. The authors of [1] applied cascaded convolutional neural 

networks to detect defects on catenary support devices. Chen et al. [2] proposed a vision-

based method by applying deep convolutional neural networks (DCNNs) to the detection 

of fastener defects. Huang et al. [3] implemented defect detection of seven key areas 

(including droppers) of the catenary based on convolutional neural networks using high-

definition images taken by the 4C inspection train. However, these methods have limited 

detection accuracy and are prone to false positives and false negatives. In particular, it 

should be pointed out that fault recognition methods based on images cannot recognize 

a situation in which the dropper seems normal visually, but the actual stress has changed. 

In order to overcome the shortcomings of the non-contact detection method, it is also 

necessary to install the acceleration sensor on the contact net to obtain the data of the 

running state signals and study the intelligent fault diagnosis methods. Zhao et al. [15] 

proposed a feature extraction method for high-speed rail fault diagnosis based on 

integrated signal empirical mode decomposition (EEMD) and fuzzy entropy by 

extracting the mean value of the fuzzy entropy of the intrinsic modal function as features 

and then using a neural network to identify each working condition. The authors of [1] 

analyzed the dynamic response characteristics of faults in different catenary structures 

from the perspective of catenary–pantograph coupling dynamics, and they used support 

vector machines to identify fault features. Zhao et al. [4] using the hybrid filter to denoise 

the noisy signal and the wavelet transform of the signal, calculated the Lipschitz 
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exponent according to the principle of modulus maxima, and realized the detection of 

wire breakage. How-ever, the failure recognition rate of these methods needs to be 

further improved. 

At present, there are few studies in the literature on fault diagnosis for catenary 

accelerations, but similar mechanical fault diagnosis research can be used for reference. 

Huang [3] and others proposed a fault diagnosis method that combined wavelet packet 

decomposition (WPD) and multi-scale permutation entropy (MPE). After wavelet packet 

decomposition of the original vibration signal, all sub-sequences of the sub-band signals 

were extracted to obtain the average permutation entropy, and finally, the Hidden 

Markov Model (HMM) was used to classify and identify rolling bearings. Janssens et al. 

[5] used a Fourier transform to transform the signal data into frequency domain pictures 

and then utilized a 2D convolutional neural network for fault recognition. Wang et al. 

[6] proposed an adaptive deep convolutional neural network (CNN) to diagnose rolling 

bearing faults, applied particle swarm optimization to initialize the weights of the CNN, 

and used t-stochastic Neighbor Embedding (t-SNE) to visualize the learning situation of 

each layer of the network. Although the two-dimensional convolutional neural network 

has excellent feature learning capabilities, it still needs to preprocess the original signal 

data and convert it into a two-dimensional image. The one-dimensional convolutional 

neural network is an important branch of the convolutional neural network [7,8], which 

can effectively solve tasks such as speech recognition, electroencephalogram (ECG) 

classification, and signal-based fault detection. Zhang [9] and others proposed a one-

dimensional convolutional neural network (1D-CNN) model for bearing fault diagnosis, 

which directly acts on the original time-domain signal and successfully avoids other 

complex operations. Abdeljaber et al. [10] also used one-dimensional vibration signals 

as input to effectively solve the problem of fault identification and location. The research 

efforts above show that it is feasible to use a one-dimensional convolutional neural 

network for fault diagnosis. 

In this study, the experimental section of the Lanzhou-Xinjiang high-speed railway 

was simulated on the basis of the bow-network dynamic simulation model, in which the 

overhead catenary system was subjected to the forces of pulsating wind alone or 

pulsating wind and the pantograph simultaneously. We collected 10 channel signals from 

five acceleration sensors when two droppers were normal or broken. We established a 

1D-CNN model of four categories and then determined the super parameters of the deep 

net-work structure and the important parameters of the network optimization scheme 

through the Bayesian optimization algorithm. Furthermore, we selected the lowest sensor 

number to identify dropper fracture faults by a large number of experiments according 

to mechanics principles. 

The structure of this article is as follows: Section 2 describes the problems of 

catenary dropper breakage detection, and Section 3 introduces the methodology. Section 

4 pro-vides the results and discussion. 

2. Problem Statement 

The overhead catenary system is always in operation. It is impossible to install sensors 

on it for experiments. In this study, the acceleration sensors were installed on the contact 

cable and carrier cable by simulation to obtain the acceleration signal data of the droppers. 

From the data, we establish-ed a deep network model of the dropper breakage detection 
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and furthermore selected the lowest sensor number to identify dropper fracture faults by 

experiments according to mechanics principles. 

2.1. Test Section of the High-speed Railway 

In this study, the dynamic simulation model of the bow-net was established for two semi-

anchor sections with a mileage of K3066+568.795~K3065+588.795 on a high-speed 

railway line. The relevant design parameters of the catenary are shown in table 1. 

Table 1. Overhead catenary system design parameters 

Parameter name Numerical value Parameter name Numerical value 

Nominal span (m) 50 Load line tension (kN) 21.0 

Dropper form Simple chain type Contact cable tension (kN) 28.5 

Cable type JTMH120 Quality per unit length of cable (kg/m) 1.065 

Contact cable type CTMH150 Quality per unit length of contact line (kg/m) 1.350 

Sling interval (m) 5 Rigid suspension chord section (mm2) 28 

Dropper number 9 Chord fault analysis interval (m) 750~800 

Pull out value (m) 0.25 Wind speed (m/s) 20 

The pantograph uses the DSA250 type, which is equivalent to the three-reduced 

mass-damping-stiffness model in figure 2. Their design parameters are shown in table 2. 

Assuming that the static contact force is 70 kg, the aerodynamic force is calculated 

according to 0.00097v2 in the standard IEC 62486, where v is the pantograph running 

speed with single bow operation, and v is 250 km/h. 

 

   Figure 2. Three-reduction quality model of the pantograph. 
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Table 2. Parameters of the dsa250 pantograph simulation model 

Symbol Numerical value Symbol Numerical value 

m3 (kg) 7.51 c3 (Ns/m) 0 

m2 (kg) 5.855 c2 (Ns/m) 0 

m1 (kg) 4.645 c1 (Ns/m) 70 

k3 (N/m) 8380 f3 (N) 0.5 

k2 (N/m) 6200 f2 (N) 3.5 

k1 (N/m) 80 f1 (N) 3.5 

In the OCS, the length of a span is 50 meters, and there are nine droppers evenly 

distributed in a span. The first dropper is installed near the left support frame at 5 meters, 

and the midspan dropper is located in the middle of a span. The installation positions of 

the accelerometers are shown in figure 3. Acceleration sensor #1 is added close to the 

contact wire clamp and near the wrist arm at 0.7 m, and sensor #2 and sensor #3 are 

installed at the middle position of the carrier cable and near the right support frame, 

respectively. Sensor #4 and sensor #5 are located in the middle and right positions of the 

contact wire. 

 

Figure 3. Installation space distribution of sensors. 

The entire test section is 1.2 km long, and the selected breakage point of the droppers 

was at span #21. 

2.2. Simulation Data 

We simulated two working conditions: (1) working condition A involves only the impact 

of pulsating wind, there is no dropper breakage (normal), or there is breakage in the first 

dropper, the middle dropper, or the first dropper and the middle dropper simultaneously; 

(2) working condition B involves the joint impact of pulsating wind and the ballistic 

force of the train pantograph running at 250 km/s, there is no dropper breakage (normal), 

or there is breakage in the first dropper, the middle dropper, or the first dropper and 

midspan dropper simultaneously. The above conditions amount to a total of eight cases, 

and each case was simulated and calculated 200 times using finite element analysis 

software. In the experiment, the horizontal and vertical acceleration signals of sensors 
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#1~#5 were obtained with a sampling frequency of 277 Hz. The sample size of the 

simulation data is as follows: 

2.3. Research Target 

The goal of this research was to apply the simulation data in table 3 to establish a 

prediction model under working conditions A and B for no dropper breakage (Normal), 

dropper #1 breakage, dropper #2 breakage, and simultaneous breakage of droppers #1 

and #2 to determine the lowest acceleration sensor number and their installation positions 

such that the dropper fracture faults can be identified accurately for working conditions 

A and B. 

Table 3. The sample size of simulation data 

Working 

condition 

There is no 

pantograph action 
Running state 

Number of 

samples 

Working 
condition of A 

Only pulsating wind 
impact 

No hanger breakage (normal) 200 

First dropper breakage 200 

Middle dropper breakage 200 

Simultaneous breakage of the first 
dropper and the middle dropper

200 

Working 
condition of B 

Simultaneous impact 
with pulsating wind and 
train pantograph 

No hanger breakage (normal) 200 

First dropper breakage 200 

Middle dropper breakage 200 

Simultaneous breakage of the first 
dropper and the middle dropper

200 

3. Methodology Development 

In this study, the acceleration signals obtained in the simulation experiments were 10-

channel one-dimensional time series data. As described in this section, a four-

classification 1D-CNN deep network model was established by the data set. 

3.1. Four-classification 1D-CNN Model 

A Convolutional Neural Network (CNN) is a typical network structure in feed-forward 

neural networks, which combines multiple filters to extract the features of input data. A 

CNN is generally composed of three parts to map the original data to the hidden layer 

feature space: an input layer, some feature extraction layers, and a few fully connected 

layers, where the feature extraction layers are composed of multiple convolutional layers, 

activation layers, and pooling layers. The fully connected layers carry out feature fusion 

to classify the data. 

According to the traits for the dropper fault detection, we established the 1D-CNN 

deep network model shown in figure 4. It is a four-classification model that includes an 

input layer I; three convolutional layers C1, C2, and C3; three activation layers A1, A2, 

and A3; three pooling layers P1, P2, and P3; two fully connected layers FC1 and FC2; 

and one output layer O with four dimensions. 
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Figure 4. Four-classification 1D-CNN network structure. 

3.1.1. Input Layer 

As shown in figure 3, the length of the catenary span length is 50 meters. Sensors #1~#5 

collect 201 discrete points of signal data from a total of 10 channels of acceleration 

signals in the horizontal and vertical directions at a sampling frequency of 279 Hz 

Convolutional Layers. As shown in figure 4, 201 × 10-scale signal data are directly input 

into the 1D-CNN deep network model. 

3.1.2. Convolutional Layer 

After the input layer, convolutional kernels (Convolutional Kernels) are used to convolve 

the input data (or the feature map of the previous layer) to capture the local features of 

the acceleration signal. Each neuron of the convolutional layer is only connected to some 

neurons of the previous layer and then summarizes the local features at a higher layer, 

thereby obtaining the overall features. The convolutional layer has a weight-sharing 

feature: that is, when each convolution kernel traverses an input, the parameters are fixed, 

which greatly reduces the number of parameters of the convolutional layer and prevents 

the introduction of too many parameters. The expression of the convolution operation is 

1( , ) ( ) ( ') ( ')

' 0
*

j wl i j l l r l j l j j

i ij
y k x k x






                                                    (1) 

where 
( ')l j

i
k   is the  'j -th weight of the i-th convolution kernel at the l-th layer; 

( )jl r
x  

is the j-th local area convolved in the l-th layer; w is the width of the convolution kernel. 

As shown in figure 3, the convolutional layer C1 is set as a large convolution kernel, 

which extracts the features of the larger neighborhood of the input signal data and 

effectively suppresses noises. The kernel size can be selected in the set {3,5,7,9,11,16}, 

and the number of convolution kernel filters can be set to 16 or 32. The C2 and C3 

convolutional layers can generally use small convolution kernels, for example, 3 × 1, and 

the number of convolution kernels is 32 or 64. The one-dimensional convolution  
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operation is shown in figure 5. For the input signal data of 201×10, zero-padding is taken 

as 2, a step of 1 is used to slide in the convolution area until the input data are traversed, 

and the output feature vector is 101 × 1. 

 

Figure 5. One-dimensional convolution diagram. 

3.1.3. Activation Layer 

In order to enhance the expression ability of the network, the activation function is used 

to perform a non-linear transformation on the feature vector output through the 

convolution operation. Activation layers A1, A2, and A3 follow the convolution layers 

C1, C2, and C3, respectively. The dimensions of the activation layer are the same as 

those of the convolution layers. Three types of activation functions can be used: Sigmoid 

function, hyperbolic tangent function (Tanh), and modified linear unit function ReLU. 

The specific activation function used by each activation layer is determined by the 

hyperparameter optimization method in Section 3.2. 

The output range of the sigmoid activation function is between (0,1), has symmetry, 

and can be deduced every-where in the definition domain. However, because of its soft 

saturation, gradient explosion and gradient disappearance can easily occur when the deep 

neural network backpropagates. 

( , )

( , ) ( , ) 1
( )

1
l i j

l i j l i j

y
a sigmoid y

e


 



                                      (2) 

The Tanh function also has soft saturation, and the problems of gradient 

disappearance and gradient explosion may also occur. However, because its output  

mean is closer to 0 compared with that output by the Sigmoid function, it converges 

faster. 
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Because of its linear and unsaturated nature, ReLU can effectively solve the problem 

of gradient disappearance during backpropagation, and it adds sparse expression ability 

to the network. However, as the training number increases, there may be neuron death. 

This is because its gradient has been 0 during the process of backpropagation, and the 

weight cannot be updated. 

 ( , ) ( , ) ( , )( ) max 0,l i j l i j l i j
a relu y y                                         (4) 

3.1.4. Pooling Layer 

In order to reduce network parameters and improve the robustness of the network, 

pooling layers P1, P2, and P3 are added after the activation layers A1, A2, and A3, 

respectively. Pooling is a down-sampling process, which aggregates the information of 

the local area to obtain a feature value for the feature signal after convolution, which can 

greatly reduce the parameters of the neural network and avoid over-fitting. In particular, 

if the maximum pooling function is used, when the local information undergoes some 

small changes, the neurons in the next layer do not change, making the network very 

robust [11]. 

The commonly used pooling functions are average pooling and maximum pooling. 

The average pooling and the maximum pooling use the average value and the maximum 

value in the pooling window as the output value, respectively. The mathematical 

formulas of the two functions are as follows: 

                              
( 1) 1
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where 
( , )l i t

a  is the activation value of the t-th neural unit of the i-th feature diagram at 

the l-th layer; p is the output value of the t-th neural unit of the i-th feature map in the l-

th layer after pooling; w is the width of the pooling window. 

3.1.5. Fully Connected Layer 

In order to classify the operating state of the droppers, two fully connected layers, FC1 

and FC2, are designed after the last pooling layer. FC1 is composed of a one-dimensional 

feature vector formed by flattening the output of the last pooling layer P3, and FC2 is a 

vector whose dimensions can be 50, 100, 256, or 512. The expression of the fully 

connect-ed layer is 

( 1)( ) ( )

1

nl j l l i l

ij ji
z w a b





                                                 (7) 
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where 
( 1)( )l j
z



 is the output value of the j-th neuron in the (l+1)-th layer;  is the weight 

between the i-th neuron in the l-th layer and the j-th neuron in the (l+1)-th layer; 
l

jb  is 

the bias of all neurons in the l-th layer against the j-th neuron in the (l+1)-th layer. 

3.1.6. Output Layer 

According to table 3, working conditions A and B contain four types of faults: no dropper 

breakage (normal), first dropper breakage, middle dropper breakage, and simultaneous 

breakage of the first dropper and middle dropper. Aiming to detect these four kinds of 

faults, a deep network classification model was established. The output layer uses the 

"Softmax" function to convert the output of the neuron to a value between 0 and 1, which 

corresponds to the four running states above. 

In particular, to avoid overfitting the network, Dropout is used after the C1, C2, C3, 

and FC2 layers, and the ratio d is randomly selected in the interval [0, 0.8]. 

3.2. Hyperparameter Optimization 

The 1D-CNN deep network model described in Section 3.1 contains many 

hyperparameters that have a great impact on the performance of deep networks. As 

shown in table 4, the hyperparameter space has 14 dimensions, and there are up to 55296 

possible combinations of hyperparameter. Because the deep network training and model 

evaluation need to take a long time for a set of determined hyper-parameters, 

hyperparameter optimization is a very complex process. 

Table 4. 1d-cnn hyperparameter space 

Super parameter Value range 

C1_kernel_size 3,5,7,9,11,16 

C1_filters 16, 32 

C1_strides 1, 2, 

C1, C2, C3, FC2 activation function relu, tanh, sigmoid 

C1, C2 and C3 and FC2_Dropout [0,0.8] 

An optimization method rmsprop, adam, adagrad, nadam 

Batch_size 16, 32, 64 

Number of FC2 hidden layer units 50, 100, 256, 512 

The objective function of hyperparameter optimization is multi-peak, non-convex, 

high-dimensional, and even without expression, and it is difficult to solve. The 

hyperparameter optimization methods commonly used include grid search, random 

search, genetic algorithm, particle swarm optimization, and Bayesian optimization [12]. 

Grid search needs to traverse all the parameter combinations, which can easily cause the 

combination to explode, so its calculation speed is very slow, and it easily obtains local 

optimization for non-convex problems. Genetic algorithms and particle swarms require 

a large number of function values of the initial population and are generally not used 

because their computational efficiency is too low. Bayesian optimization [13] uses 

existing prior information to solve optimization problems and does not have a clear 

Y. Gong and W. Jing / Research on 1D-CNN Detection Methods 715



objective function. Compared with random or grid search, its evaluation cost of the 

objective function is lower. On this basis, the Bayesian optimization algorithm was used 

in this study for deep network hyperparameter optimization. 

The Bayesian optimization algorithm [14] has four core elements: domain space, 

objective function, probabilistic proxy model, and acquisition function. For the 

hyperparameter optimization in this paper, the specific core elements are as follows: 

 Domain space: it indicates the range of each hyperparameter value and is 

determined according to the probability distribution of each hyperparameter, as 

shown in table 4. 

 Objective function: it takes the negative value of the prediction accuracy rate of 

the four-category model on the test set as the objective function value of 

hyperparameter optimization. 

 Probabilistic proxy model: It is the true optimization objective of Bayesian 

optimization methods, and it can avoid the time-consuming hyperparameter 

evaluation process, thereby reducing computational overhead and improving 

efficiency. The commonly used proxy models include the Gaussian process, 

random forest, and Tree-structured Parzen Estimator (TPE) [14], among others. 

The TPE probabilistic proxy model was used in this study. 

 Acquisition function: the acquisition function is derived from the TPE proxy 

model [14]. 

4. Experiments and Analysis 

In the experiments described in this section, network training was performed on the four-

classification deep network model established in working conditions A and B, and the 

effects of the signals of 10 acceleration sensors on the classification models were 

analyzed. 

The computer configurations used in the experiments were CPU i7 6700, a main 

frequency of 3.4 GHz, and 32 GB memory. The TensorFlow deep learning framework 

and Keras library of neural networks were used in the Python development language to 

build the four-classification 1D-CNN deep network model shown in figure 3. 

4.1. Time–frequency Analysis of Acceleration Signals 

In order to understand the time–frequency characteristics of acceleration signals when 

the dropper breaks, the 10 acceleration vibration signals collected by five sensors are 

shown in figure 6 and figure 7 in the time-domain and frequency-domain diagrams for 

the four states under working conditions A and B in table 3. 

In every subgraph at the top of figure 6 and figure 7, labels a, b, c, and d represent 

four operating states: the first dropper breakage, the span-center dropper breakage, the 

simultaneous breakage of the first and span-center dropper, and no dropper breakage, 

respectively. 

From figure 6, it can be found that the vertical acceleration signals of the four 

operating states are stronger than the horizontal ones. When the droppers break, the 

amplitudes of vibration acceleration in the vertical direction markedly increase, and the 

largest frequencies among them move toward high frequencies. Furthermore, it is found 

that the time-domain and frequency-domain graphs of 10 channels are very different 
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when the first dropper and the span-center dropper break at the same time. The time–

frequency graphs of acceleration signals in four operating states with the simultaneous 

impact of pulsating wind and the train pantograph are shown in figure 7. Compared with 

figure 6, it can be seen clearly that the acceleration signals on the 10 channels of the four 

operating states all increase. Among them, the acceleration signals change markedly 

when the dropper breaks, and the vibration amplitudes of the three fault states are greater 

than that in the normal state. 

 

a) Vertical acceleration of sensor #1 on carrier cable 

 

 

b) Horizontal acceleration of sensor #1 on carrier cable 

 

 

c) Vertical acceleration of sensor #2 on carrier cable 
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d) Horizontal acceleration of sensor #2 on carrier cable 

 

e) Vertical acceleration of sensor #3 on carrier cable 

 

f) Horizontal acceleration of sensor #3 on carrier cable 

 

g) Vertical acceleration of sensor #4 on contact cable 
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h) Horizontal acceleration of sensor #4 on contact cable 

 

i) Vertical acceleration of sensor #5 on contact cable 

 

j) Horizontal acceleration of sensor #5 on contact cable 

Figure 6. Time–frequency graphs of acceleration signals in four operating states with the impact of pulsating 
wind only (working condition A). 

By comparing figure 6 and figure 7, it can be seen that the vibration with the 

simultaneous impact of pulsating wind and the train pantograph is stronger than that with 

the impact of pulsating wind only. 

From the data described in table 3, the four-classification 1D-CNN deep network 

model shown in figure 3 was established, and the network models were trained for 

working conditions A and B separately. The sample size of each working condition was 

800, the training set was divided into 512 samples each time, the verification set was 128 

samples, and the test set was 160 samples. 
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a) Vertical acceleration of sensor #1 on carrier cable 

 

b) Horizontal acceleration of sensor #1 on carrier cable 

 

c) Vertical acceleration of sensor #2 on carrier cable 

d) Horizontal acceleration of sensor #2 on carrier cable 
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e)  Vertical acceleration of sensor #3 on carrier cable 

 

f) Horizontal acceleration of sensor #3 on carrier cable 

 

g)  Vertical acceleration of sensor #4 on contact cable 

 

h) Horizontal acceleration of sensor #4 on contact cable 
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i) Vertical acceleration of sensor #5 on contact cable 

 

j) Horizontal acceleration of sensor #5 on contact cable 

Figure 7. Time–frequency graph of acceleration signals in four operating states with the simultaneous impact 
of pulsating wind and the train pantograph (working condition B). 

There are many hyperparameters in the four-classification 1D-CNN deep network 

model, such as the size of the convolution kernel, the number of convolution kernels, the 

activation function, the optimizer, and the number of neurons in the fully connected layer, 

all of which need to select the optimal value. On the basis of the Bayesian optimization 

method, the TPE probabilistic proxy model was used in this study to automatically 

optimize the hyperparameters of the 1D-CNN deep network. The number of iterations 

was set to 30, and the optimal parameters automatically selected by the Bayesian 

optimization method are shown in table 5. 

Table 5. Hyperparameter automatic selection result 

Super parameter The optimal parameter values Super parameter The optimal parameter values 

'C1_kernel_size' 16 'C1_Dropout' 0.24 

'C1_filters' 32 'C2_Dropout' 0.0001 

'C1_strides' 2 'C3_Dropout' 0.05 

'C1_Activation' tanh 'FC2_Dropout' 0.75 

' C2_Activation' relu 'optimizer' adagrad 

'C3_Activation' tanh 'batch_size' 32 

'FC2_Activation' tanh 
Dense '(FC2 Layer 

 Number) 
256 

It can be seen from table 5 that the activation function and the dropout ratio of each 

layer are different. It can be seen that the automatically selected hyperparameter values 
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are more flexible than those manually set. Using Keras framework model visualization, 

the final trained model structure is shown in figure 8. 

 

Figure 8. The 1D-CNN network structure automatically selected by the Bayesian optimization method. 
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After the hyperparameters of the deep network were determined, the deep network 

was trained 50 times on the data of working conditions A and B, respectively. In case A, 

after 100 iterations, the loss of the training set and the verification set can converge, and 

the recognition rate reaches 96.75% ± 0.88%. Case B only needs 20 iterations of loss to 

converge, and the recognition accuracy rate is 99.40% ± 0.55%. The time to diagnose a 

signal using the 1D-CNN model is about 0.0064 s, which can effectively meet the 

requirements of real-time detection. Figure 9 and figure 10 are the training iteration 

process diagram and the confusion matrix of case A and case B, respectively. 

 

    
a) Only under the impact of pulsating wind                     b) Under the joint impact of pulsating wind 

and pantograph 

 Figure 9. Four-class 1D-CNN model training iterative process. 

 

      
a) Only under the impact of pulsating wind                b) Under the joint impact of pulsating wind 

                                                                                                  and pantograph 

Figure 10. Confusion matrix. 

Using the t-SNE non-linear dimensionality reduction method, figure 11 shows the 

distribution of all samples by two-dimension features after the convolutional layers C1, 

C2, and C3. As can be seen from (b) of figure 10, after the first layer C1 of the 

convolution operation, the four types of acceleration signals can be well classified, and 

the distances of the four categories increase with the increase in the number of 

convolution layers, while, in (a) of figure 10, until the third layer C3, the four categories 

of acceleration signals are basically classified. Figure 11 shows that the 1D-CNN model's 

non-linear expression ability is enhanced with the increase in the number of 

convolutional layers. 
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a) The impact of pulsating wind only           b) The joint impact of pulsating wind 

 and train pantograph 

Figure 11. The classification effect of all samples is visualized by t-SNE dimensionality reduction in each 
convolution layer. 

4.2. Analysis of the Influence of Sensor Installation Quantity and Location on Dropper 

Fault Detection 

The impact of the five sensors on the diagnostic accuracy of the model is analyzed below. 

For working conditions A and B, we removed the data of a few sensors and input 

the acceleration signals to the 1D-CNN model shown in figure 9. The obtained 

recognition accuracy, model training time, and detection time after 50 training times are 

shown in table 6. 

Table 6. Influence of sensors on model accuracy 

Working  

condition 
Sensor number Accuracy 

Training time 

 (s/Epoch) 

Testing time 

(s/sample) 

Working condition 

A 

#1-#5 96.75%±0.88% 0.71 0.0064 

#1, #2, #4 89.98%±1.58% 0.72 0.0061 

#1, #2, #3, #4 94.39%±1.53% 0.68 0.0059 

#1, #2, #4, #5 94.33%±1.83% 0.67 0.0062 

Working condition 

B 

#1-#5 99.40%±0.55% 1.217 0.0062 

#1, #2, #4 99.38%±0.50% 1.153 0.0061 

#1, #4 98.04%±0.82% 1.126 0.0062 

#1, #2 99.97%±0.11% 1.154 0.0062 

It can be seen from table 6 that the number of sensors has little influence on the 

model training time and detection time, but it has a greater influence on the recognition 

accuracy of the model. 

For working condition A, if only one sensor is removed, the accuracy drop rate is 

about 2.43%, and the effect of sensor #3 and sensor #5 on classification accuracy is 

almost the same. When sensors #1-#4 or sensors #1, #2, #4, and #5 are installed, the 

detection accuracies of the corresponding models do not differ much. Considering the 
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data comprehensively, it is recommended to install sensors #1-#5 when detection 

involves the action of pulsating wind only. 

For working condition B, when removing sensor #2, the accuracy decreases by 

1.36%, and the standard deviation increases; when only sensors #1 and #2 are retained, 

the accuracy increases instead, reaching 99.97%, and the standard deviation is only 

0.11%. Therefore, it is recommended that under working condition B, only the 

acceleration signal data of sensors #1 and #2 need to be obtained. 

Analyzed from the principle of catenary mechanics, working condition B is the 

simultaneous action of pulsating wind and the train pantograph, and the acceleration 

signals of the sensors are stronger than those under working condition A (only pulsating 

wind). For working condition B, the network model more easily obtains higher 

recognition accuracy. 

5. Results and Discussion 

For the detection of catenary dropper breakage or slack, this paper establishes an end-to-

end detection model based on acceleration signals using 1D-CNN. There are four 

situations that may occur for the catenary droppers in our test section of a high-speed 

railway: no dropper breakage (normal), breakage of the first dropper, breakage of the 

span-center dropper, and simultaneous breakage of the first dropper and the span-center 

dropper. In particular, this article, combined with the mechanical principle of the 

overhead catenary system, through a large number of experiments, demonstrates that 

under condition A (only pulsating wind action), it is necessary to collect the acceleration 

signals of sensors #1-#5 for fault detection; in condition B (pulsating wind and train 

pantograph simultaneous action), we can detect the defects of catenary droppers with 

high accuracy by only using the data of the acceleration signals of sensors #1 and #2. 

In summary, the main results of this work include the following: 

 Using 1D-CNN, a deep network structure of multichannel signals was 

established for automatically learning the characteristics of acceleration signals, 

which is better than the traditional manual feature extraction method. 

 The Bayesian optimization algorithm was used to automatically select the 

structural parameters and network training parameters of 1D-CNN, which 

greatly improved the efficiency of deep network training. 

 The minimum numbers of acceleration sensors under conditions A and B were 

determined by experiments, which provides a basis for engineering 

implementation. 

 This paper presents the end-to-end detection methods of catenary dropper 

breakage, and acceleration signal data are the only direct input needed to detect 

the working state of the droppers. 

In short, compared with the traditional artificial feature extraction methods, the 

methods proposed in this paper have high recognition accuracy and strong robustness, 

and a new effective method for online identification of catenary dropper faults is 

explored. 
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