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Abstract. A general optimization method, based on the power series method, is 
presented for computing the conformal mappings with explicit expressions from: (a) 
the unit disc onto an infinite domain exterior of a closed Jordan curve, (b) the 
circular annulus domain onto a finite doubly-connected domain bounded by two 
closed Jordan curves, (c) the infinite domain bounded by two circular curves onto 
an infinite domain bounded by two non-circular closed Jordan curves. The unknown 
mapping functions are approximated by the power series method. The problem of 
solving the mapping function coefficients is transformed into the problem of 
determining the image points on the image plane by means of the least square 
method. Different from most of the previous optimization methods, the angles are 
set as the design variables rather than the mapping function coefficients in the paper. 
The influence of the terms of the series on the calculation accuracy is investigated. 
The successful applications of the proposed method are shown by a large number of 
numerical examples. 
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1. Introduction 

The conformal mapping, which can transform the physical regions with complex 

geometry onto simpler computational regions, is a fundamental tool in complex analysis. 

It has many successful applications in heat conduction, electromagnetics, electrostatics, 

hydrodynamics, aerodynamics and grid generation [1-2]. Especially, the conformal 

mapping is of great significance in the stress analysis of structural components with 

various shaped holes in 2D elasticity theory, which requires an explicit expression of 

mapping function. Therefore, an effective and accurate method for determining the 

mapping function is crucial for both theoretical signification and practical application. 

There are two types of conformal mappings: the mapping from a problem region to a so-

called canonical region, and the inverse mapping from a canonical region to a problem 
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region. The problem of finding the conformal mappings has attracted the interest of many 

researchers, who approached the problem by using many methods. 

The conformal mapping of the interior or the exterior of the unit circle to a given 

domain bounded by a closed Jordan curve has been well researched. One popular method 

involves the integral equation methods (e.g., Mikhlin’s integral, Symm’s integral and 

Theodorsen’s integral), which can be reduced to the derivation and solution of the 

integral equations for the boundary correspondence. The Fast Fourier Transform 

algorithm, orthonormal polynomials method, Wegmann’s method and Lagrange’s 

interpolation method can be introduced to solve the equations [3]. Particularly, the 

Schwarz-Christoffel transformation [4-6] were applied to solve mappings that involve 

regions with polygonal boundaries. Papamichael and Kokkinos [7] used the Bergman 

kernel method and the Ritz method to solve the mapping. The mapping function of the 

interior or exterior the unit circle can be approximately described by a truncated Taylor 

series. Fornberg [8] utilized the Fourier transform method and Lu and Wang [9] used the 

optimization method to determine the leading Taylor coefficients. Some iterative 

methods are also proposed to approach the problem, such as the method of searching 

mapping points on the boundary J [10] and the method based on the triangle interpolation 

theory [11]. 

The problem of finding the conformal mapping of a circular annulus onto a finite 

doubly connected region with two Jordan curves is also important in conformal 

transformation. Many solutions [12-15] are confined to the regions whose boundaries are 

circular or axisymmetric with respect to coordinate axes. Vecheslavov and Tolstobrova 

[16] developed the Schwarz-Christoffel transformation for doubly connected polygonal 

domains. In particular, Papamichael and Kokkinos [17] used the singular functions to 

solve the mapping problem of domains with sharp corners. For a more general domain, 

the integral equation method presented by Symm [18], the iterative method developed 

by Wegmann [19] and the conjugate function method used by Hakula et al. [20] can be 

introduced. 

There are some methods for obtaining the conformal mapping of multiply connected 

domains with connectivity larger than two. Mayo [21] employed Mikhlin’s integral 

equation to determine the mapping function which maps multiply connected regions onto 

slit discs. Perhaps the ideal canonical domains may be circular since they can bring a lot 

of convenience in application. The Schwarz-Christoffel transformation for conformal 

mappings from circular domains onto polygonal domains were presented by DeLillo et 

al. [22], Crowdy [23-24] and DeLillo [25]. Zeng and Lu [26] considered the conformal 

mapping which maps two circular domains onto an infinite domain bounded by two 

arbitrarily shaped curves to solve the twin-tunnel problem in underground engineering. 

A new general form of mapping function in the form of power series was proposed and 

the optimization method was applied to determine the mapping function coefficients. But 

the solution is confined to the case where the curves are symmetric with respect to x-

axis. The general Schwarz-Christoffel integral for multiply connected domains was 

derived by Mityushev [27-28]. 

In summary, the integral method has the advantage of obtaining the conformal 

transformation of domains with complicated boundaries. The power series method has 

also been used for solving simply and multiply connected domain problem [29-31]. 

Although there are some approximations since the power series are adopted, the 

proposed method can provide explicit expressions and determine the mapping function 

coefficients, which is urgently needed in the stress analysis of structural components and 
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underground constructions. The application of the power series method in mechanics 

was systematically developed by Savin [32]. 

This paper proposed a general method for computing the conformal mapping 

functions. The unknown forms of the mapping functions are described by power series. 

The method ingeniously sets the angles on the image plane as the quantities to be solved 

rather than the mapping function coefficients by using the least square principle. Then 

the problem is transformed into an optimization problem with the angles as design 

variables, which makes it easy to evaluate the initial values of the design variables in the 

range of [0,2π]. In addition, the method has no restrictions on the shape and symmetry 

of the computational domains on the z-plane. The mixed penalty function method is used 

as an optimization tool to solve the problem effectively. Numerical examples collected 

from various structural components and underground engineering are given to prove that 

the method has successful applications in the following conformal maps: 

(a) The mapping from the unit disc onto a domain exterior of a closed Jordan curve 

(figure 1). 

(b) The mapping from the annulus domain onto a finite doubly-connected domain 

bounded by two closed Jordan curves (figure 2). 

(c) The mapping from an infinite domain bounded by two circular curves onto an 

infinite domain bounded by two arbitrary closed Jordan curves (figure 3). 

2. Mapping Functions Described by Power Series 

2.1. The Mapping of an Infinite Domain Bounded by a Closed Jordan Curve 

Let ��
� be an infinite domain exterior of the Jordan curve �� in the z-plane (figure 1). The 

conformal mapping function from the unit disc �ζ
� = �ζ: |ζ| ≤ 1� in the ζ-plane onto ��

� 

can be approximated by a truncated Taylor series as follows [1]. 
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where ζ = ����, i is the imaginary unit, and the coefficients 	�
� = −1,0,1, … ,�
 are all 

complex numbers for a general domain. 

 

Figure 1. The conformal mapping from the unit disc onto the infinite domain exterior of an arbitrary closed 
Jordan curve. 
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2.2. The Mapping of an Annular Domain Bounded by Two Closed Jordan Curve 

As shown in figure 2, ��
� is a finite doubly-connected domain in the z-plane, bounded 

externally and internally by two closed Jordan curves ��� and ��	, respectively. Consider 

the problem of conformally mapping a circular annulus domain �ζ
� = �ζ: �� ≤ |ζ| ≤ 1� 

in the ζ-plane onto ��
� in such a way that ��� corresponds to the inner, and ��	 to the outer 

circumference. The ratio of the radii of the annulus domain is unique [18]. Suppose the 

outer radius is 1 and the inner radius is ��
0 < �� < 1
 . Of course, ��  is initially 

unknown and has to be determined. The mapping function can be approximated by a 

truncated Laurent series. 
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(2) 

where the coefficients 	�
� = −�, −
� − 1
, … , −1,0,1, … , (� − 1),�
 are all complex 

numbers for a general domain. 

 

Figure 2. The conformal mapping from a circular annulus domain onto the finite domain bounded by two 
arbitrary closed Jordan curves. 

2.3. The Mapping of an Infinite Domain Bounded by Two Closed Jordan Curves 

 

Figure 3. The conformal mapping from an infinite domain bounded by two circular curves onto the infinite 
domain bounded by two arbitrary closed Jordan curves. 
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 be a triply-connected domain in the z-plane, bounded by two non-circular closed 

Jordan curves �
� and �
	. Zeng and Lu [26] found the conformal mapping function, 

which maps the infinite domain �ζ

 (figure 3) bounded by two circular curves onto ��
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The left circle and right circle in the ζ-plane correspond to �
� and �
	, respectively. The 

radius of the left circle is fixed as 1. The radius of the right circle is indicated as �
 and 

remains to be solved. And the mapping function has the following general form 

                                  
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(3) 

where �� is the distance between the two circular curves in the ζ-plane, � = 1 + �� + �
 

and the coefficients 	�, 	�, 	�
� = 1,2, … ,��
 and 	
�
� = 1,2, … ,�	
 are all complex 

numbers for a general domain. 

3. Solution of Mapping Function Coefficients 

In the section, the general method for solving the mapping function coefficients in ��
ζ
, 

��
ζ
, �

ζ
 is presented. Although the forms of the functions are different, the mapping 

problem can be transformed into an optimization problem. 

3.1. Coefficients in ��
ζ
 

On the ��
�  (figure 1), we have � = 1, and ζ = ���. Assume that m mapping points are 

provided clockwise in the z-plane to describe the boundary �� . Let �� = �� +

���
� = 1,2, … ,�
  be a point on the �� , corresponding to ζ
�

= ����  on the ��
� . The 

��
� = 1,2, … ,�
 are unknown when the mapping function coefficients are not given. 

P� fixed at the x-axis corresponds to P�
� fixed at the ξ-axis. Then the following equation 

is obtained according to Eq. (1). 
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Eq. (4) can be written as 

                                                                   Z XY                                             (5) 
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Once � is given, � can be evaluated by the complex least-square method [33], we 

have 

                                                        T T
ˆ

-1

Y = X X X Z

                                       
(6) 

where �� means to carry out conjugate operation for each element in the matrix �, and �� 

is the estimate of Y that allows 

                                                         
T

ˆ ˆ

e   Z Z Z Z
                                   

(7) 
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to reach the minimum value, where �� = ���. 

It can be observed that Eq. (6) will be reduced to the solution of a set of complex 

linear equations if � = � + 1, i.e., �� = �
��. In order to achieve high accuracy, this 

paper takes � > � + 1. This means that Eq. (4) will be satisfied exactly if the error e 

(Eq. (7)) is equal to zero. Our problem then is to find approximate solution �
∗

=

��,�	, … ,��
 (corresponding to X∗) that minimizes e. The problem can be solved by 

means of optimization technique. The mixed penalty function method [34], which can 

solve optimization problems with equality and inequality constraints, is introduced 

herein to address the mapping function coefficients. The ��(� = 1,2, … ,�) are set as the 

design variables. Eq. (7) is the objective function. Evidently, we have 

1 1 2
=0, ... 2

m
         

Therefore, the following constraints are made: 

                                        
1

1

0

0 1,2,..., 1

2 0

j j

m

j m



 

 






   


                                       

(8) 

There are 1 equality constraint and m inequality constraints. Once �
∗

 is obtained, 

the mapping function coefficients �∗ can be given by 

                                         
T T

    
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 

-1

Y = X X X Z

                                                
(9) 

In theory, the mapping function coefficients will be real numbers if the given 

domain is symmetric with respect to x-axis. To obtain the accurate real mapping function 

coefficients, the following steps are performed. First we have 

                                                 U VY                                                               (10) 
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X
. The signs Re( ) and Im( ) mean to find the real 

part and imaginary part of each element of the matrix in bracket. Then, �  can be 

evaluated by the real least square method presented by Gauss. 
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(11) 

The objective function is 

                                                
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where  � = !��. And the equality and inequality constraints remain unchanged. Similarly, 

�∗ can be given by 

                                              *T *T 
-1

Y = V V V U
                                            

(13) 

where V∗ corresponds to the optimal solution �
∗

. 

3.2. Coefficients in ��
ζ
 

In figure 2, ��  and �	  mapping points are provided anticlockwise to describe the 

boundaries ��� and ��	, respectively. P� fixed at the x-axis corresponds to P�
� fixed at the 

ξ-axis. Let �� = �� + ��  be a point on the ��� (corresponding to � = 1,2, … ,��) or ��	 

(corresponding to � = �� + 1,�� + 2, … ,�� +�	). The points on the ���
�  and ��	

�  are 
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ζ
�

= ����
� = 1,2, … ,��
  and ζ
�

= ���
���
� = �� + 1,�� + 2, … ,�� +�	
 , 

respectively. Then the following equation is obtained according to Eq. (2). 

 
1

1 1 1 2

, 1,2, ,

, 1, 2, ,

j

j

n
ik

kn
k lk

j b j k j n
ikk l k

k b

k l

c e j m

z c

c r e j m m m m





  










  

    







�

�

          

(14) 

Let � = �� +�	, then Eq. (14) can be written in the form of Eq. (5), the difference 

is that 
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at this time. 

The objective function is the same as Eq. (7). The �� and �� are set as the design 

variables. And there are 1 equality constraint and � + 2 inequality constraints. 
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3.3. Coefficients in �

ζ
 

As can be seen in figure 3, ��  and �	  control points are selected anticlockwise to 

describe the boundaries �
� and �
	, respectively. P� fixed at the x-axis corresponds to  

P�
� fixed at the ξ-axis. Similarly, let �� = �� + �� be a point on the �
� (corresponding to 

� = 1,2, … ,��) or �
	 (corresponding to � = �� + 1,�� + 2, … ,�� +�	). The points 

on the �
�
�  are ζ

�
= ����
� = 1,2, … ,��
 . Herein, we introduce the unknown "  to 

indicate the angle with #	
ꞌ  as the vertex. Then, the points on the �
	

�  are ζ
����

= � +

�
�
���
� = 1,2, … ,�	
. Then the following equation is obtained according to Eq. (3). 
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Let � = �� +�	, Eq. (16) can be written in the form of Eq. (5), the difference is 

that 
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at this time. 

The objective function is the same as Eq. (7). The ��, "�, �ꞌ and �� are set as the 

design variables. And there are 1 equality constraint and � + 2 inequality constraints. 
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4. Investigation on the Calculation Accuracy 

In Section 3, m mapping points are provided to describe the corresponding boundaries. 

The more mapping points are provided, the closer the boundary is to the given shape. 

And the number of the design variables for solving ��
ζ
, ��
ζ
 and �

ζ
 are m, � +

1 and � + 2, respectively. However, as is known, the optimization algorithm might be 

invalid if the number of the design variables is too large. This paper suggests that the 

maximum number of the design variables should not exceed 80 in most cases. Then, the 

influence of the number of the terms in the mapping function on the calculation accuracy 

is investigated in the following section. 
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4.1. The Infinite Domain Bounded by a Square 

Let �� be the infinite domain which is bounded internally by a square with four corners 

at � � �1 � 1� . We select 32 mapping points on the square, that is, � � 32 . The 

mapping function ��
�ζ
 can be computed by the method proposed in Section 3.1. The 

mapping points and the curves plotted by the obtained ��
�ζ
 with different terms of ζ 

are shown in figure 4. The errors are listed in table 1. 

Table 1.  The errors for different terms of a square. 

 n=3 n=7 n=11 n=15 

e 0.12974E-1 0.17901E-2 0.66904E-3 0.40441E-3 

 

Figure 4. The mapping points and the curves plotted by different terms. 

Table 1 shows that the error e decreases as n increases, which means that the 

solution will achieve high accuracy as long as the number of the terms of the mapping 

function is large enough. As can be seen in figure 4, the solution in this paper have high 

accuracy for larger n, even for the sharp corners. And it will be further demonstrated by 

a large number of numerical examples in the Section 5. 

4.2. The Annular Domain Bounded by a Square and a Circle 

Let �� be the finite domain which is bounded externally by a circle and internally by a 

square. The radius of the circle is 2 and the corners of the square are at � � �1 � 1�. 32 

mapping points are selected on each boundary, that is, � � 64 . Then the method 

presented in Section 3.2 are used to solve the mapping function coefficients for different 

positive and negative terms of ζ in ��
�ζ
. The orthogonal curves on the ζ-plane and z-

plane are shown in figure 5. The errors for different terms are listed in table 2. 
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Table 2.  The errors for different terms of a square in a circle. 

 l=3,n=1 l=7,n=5 l=11,n=9 l=15,n=13 

e 0.40586E-1 0.75954E-2 0.52400E-2 0.33964E-2 

 

Figure 5. The conformal mapping from the annulus domain onto the finite domain bounded externally by a 

circle and internally by a square. 

4.3. The Infinite Domain Bounded by a Square and an Oval 

 

Figure 6. The conformal mapping from the circular domain onto the infinite domain bounded by a circle and 

an oval. 

Y. Ma et al. / Numerical Applications of Conformal Mapping with Explicit Formulae246



Let �� be the infinite domain bounded by a square and an oval. The corners of the square 

are at � � �1 � 1�. The lengths of the major semi-axis and the minor semi-axis of the 

oval are 0.75 and 0.375, respectively. Herein, we select 28 mapping points on each 

boundary, that is, � � 56. Let n1=n2 in ��
�ζ
. Then the influence of n1 and n2 on the 

accuracy is discussed. Table 3 lists the errors for different terms of ��
�ζ
 computed by 

the method in Section 3.3. Figure 6 plots the orthogonal curves on the ζ-plane and z-

plane. 

Table 3.  The errors for different terms of a square and an oval. 

 n1=n2=5 n1=n2=7 n1=n2=9 n1=n2=11 

e 0.70052E-2 0.18630E-3 0.16263E-3 0.48704E-4 

5. Numerical Examples 

5.1. The Infinite Domain Bounded By a Closed Jordan Curve 

This section mainly investigated the given domains which are not symmetric with respect 

to the axes of the coordinates. Consider the infinite domains �� bounded internally by 

an oval, a triangle, a square and a hexagon, respectively (figure 7). The mapping function 

coefficients are listed in table 4. Notice that the numbers in bracket represent the real and 

imaginary parts of the coefficients, respectively. 

 
Figure 7. Combinations: (a) Oval, (b) Triangle, (c) Square, (d) Hexagon. 
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Table 4.  The mapping function coefficients for different geometries in figure 7. 

Oval Triangle Square Hexagon 

��� 
(0.71007,-

0.24055) 

(0.73583,-0.41497) 
(1.1656,0.19546) (0.92215,-4.8705E-2) 

�� 
(-2.4003E-

4,5.4658E-4) 

(-2.3953E-4,5.7328E-2) 
(6.7615E-4,-2.1993E-3) (-2.8626E-4,-8.6638E-4) 

�� 
(4.9193E-

2,0.24424) 

(1.3953E-4,2.9350E-4) 
(1.2535E-3,-9.7808E-4) (-3.5183E-5,-6.7410E-4) 

�� (0.24191,-0.14633) (2.4320E-3,-2.2312E-4) (-1.3766E-4,-5.9978E-4) 

��  (-2.4540E-4,2.2411E-4) (5.3812E-3,-0.19787) (-3.2144E-4,-6.0976E-4) 

�� (-1.1524E-4,2.3328E-4) (-1.3381E-3,-2.1334E-4) (-7.0092E-4,-8.5111E-4) 

��  (1.6577E-2,-1.0884E-2) (-2.0258E-4,-5.2033E-4) (-1.6729E-2,6.2398E-2) 

�	  (1.8462E-4,4.2741E-5) (-5.5365E-5,-1.4917E-3) (6.2500E-4,-1.2294E-4) 

�
 (1.2088E-5,-6.6912E-5) (-2.1301E-2,2.1203E-3) (3.5856E-4,1.7406E-4) 

��  (4.4258E-3,-3.2537E-3) (-2.9561E-5,-2.9406E-4) (3.1094E-4,1.4535E-4) 

�� (1.0649E-4,3.0993E-4) (-1.1720E-4,4.2141E-6) (3.0898E-4,9.3731E-5) 

���  (2.1984E-4,3.0512E-4) (1.6128E-4,-2.3872E-4) (1.5796E-4,-1.1818E-4) 

��� (2.5585E-3,-1.7658E-3) (1.4370E-3,6.2268E-3) (-8.0822E-3,5.4006E-3) 

���   (-1.6262E-4,-4.4685E-4) (-7.5624E-5,2.8443E-4) 

���   (-6.8037E-4,-4.3629E-4) (-3.4352E-4,2.7102E-4) 

��� (-3.8986E-4,-1.5783E-4) (-4.1703E-4,2.2590E-4) 

���   (1.7334E-3,1.6694E-4) (-4.8575E-4,2.1500E-4) 

5.2. The Annular Domain Bounded by Two Closed Jordan Curves 

Let �� be the finite doubly-connected domain whose boundary components are shown 

in figure 8. The obtained mapping function coefficients are listed in table 5. If the 

mapping domain is symmetric with respect to y-axis, the jth (j is even) power of ζ in 

��
ζ
 is vanished. In particular, if the mapping domain exhibits four axes of symmetry 

(see figure 8(d)), only mapping coefficients 	�
� = −�, −
� − 4
, … , −3,1,5, … , (� −

4),�
 will appear [1]. In this case, the mapping function coefficients can be obtained by 

only eliminating the redundant terms in matrices � and � in Eq. (5). 

Table 5.  The mapping function coefficients for different geometries in figure 8. 

 Oval in an oval Horse-shoe in a horse-shoe Oval in a circle Square in a circle 

����  1.1578E-3 -1.9594E-5 

����  -4.6977E-4   

��� 1.9133E-8 -1.5842E-3 4.0345E-8  

���  3.1817E-3   

��
 2.3282E-7 -7.8804E-4 3.9900E-7 4.0506E-4 

��	  -5.3278E-3  

��� 5.9887E-7 1.2420E-2 3.7540E-6  

���  -4.2666E-3  

��� 3.7249E-5 -1.5158E-2 9.2132E-5 -3.8779E-2 

���  7.4812E-2   

��� 0.29976 -0.25328 7.8497E-2  

��  0.21242   

�� 1.4999 1.8835 1.4949 2.0032 

��  3.5679E-2   

�� 4.4511E-4 -0.11025 -7.2039E-2  

��  3.0196E-2  

�� -2.9224E-5 3.2096E-3 6.3666E-3 3.7204E-2 

�	  -1.2928E-2  

�
 -2.1199E-5 8.5990E-3 -1.7400E-3  

��  -1.0084E-3  

�� -2.8792E-5 -7.6757E-3 -5.9515E-4 2.7238E-4 

���  3.4637E-3   

���  1.0180E-3  
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�� 

0.59994 0.86913 0.40418 0.58547 

 

Figure 8. Combinations: (a) Oval in an oval, (b) Horse-shoe in a horse-shoe, (c) Oval in a circle, (d) Square in 

a circle. 

In figure 8(a), the two ovals are confocal and there is an analytic solution which 

maps the ovals onto an annulus [18]. The value of �� obtained by the proposed method 

is 0.59994, which is in good agreement with the analytic solution 0.6. And figure 8(b) 

defines two similar horse-shoe shaped boundaries, however, there are small errors at the 

sharp corners which are not overcome by the method. 

5.3. The Infinite Domain Bounded by Two Closed Jordan Curves 

Let �� be the infinite triply-connected domain defined in Section 3.3, whose boundary 

are given in figure 9. The obtained mapping function coefficients are listed in table 6. 

Similarly, the symmetry of the mapping domains in figure 9(a) and figure 9(b) are used. 

The shapes in figure 9 are collected from the twin-tunnel problem in underground 

engineering, and it shows that the method proposed in this paper can better solve the 

insurmountable problem in reference [26]. 
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Figure 9. Combinations: (a) Square-oval, (b) Circle-oval, (c) Vertical-wall semicircle-circle, (d) Two vertical-

wall semicircles. 

Table 6. The mapping function coefficients for different geometries in figure 9. 

 Square-oval Circle-oval 
Vertical-wall semicircle-

circle 

Two vertical-wall semicircles 

cꞌ 1.1766 0.91599 (1.2414,4.0752E-2) (1.3667,-2.2974E-2) 

�� 

-2.8392E-2 7.2359E-2 (-5.1291E-4,-0.12657) (-5.9496E-2,0.37765) 

�� 

-3.1265E-4 8.7447E-4 (-0.11803,4.6651E-3) (-0.24796,-3.7751E-3) 

�� 

1.1553E-3 1.9131E-4 (-5.6592E-3,-9.3138E-2) (3.3896E-3,-8.4205E-2) 

�� 

-0.20101 7.6589E-5 (-0.12179,1.2049E-2) (-0.14129,-9.8826E-3) 

�� 

-1.0705E-3 -7.9637E-6 (6.5739E-3,4.7880E-2) (-6.1032E-3,5.1798E-2) 

�� 

-2.4429E-6 -7.7048E-5 (-4.7252E-3,4.5766E-4) (-2.5086E-3,2.6518E-4) 

�� 

-3.2690E-4 -6.1476E-6 (2.2059E-3,1.2196E-2) (-1.3625E-3,5.2319E-3) 

�	 

2.1192E-2 -4.6018E-5 (8.9879E-3,-2.1027E-3) (6.0879E-3,1.3290E-3) 

�
 

3.3829E-4 -5.1953E-6 (-2.1976E-3,-7.9069E-3) (1.4369E-3,-8.6580E-3) 

�� 

1.2122E-4 -2.7879E-5 (-2.4172E-3,7.2238E-4) (-2.9966E-3,-7.8302E-4) 

��� 

-1.8914E-4 4.4327E-6 (-1.0090E-3,-2.9616E-3) (2.3242E-4,-1.6948E-3) 

��� 

-8.9233E-2 0.29443 (-2.7230E-4,4.7118E-5) (-0.15748,-1.7647E-3) 

��� 

5.7956E-5 -1.0284E-5 (3.4515E-5,-1.8363E-6) (9.9577E-4,-4.2943E-2) 

��� 

2.8368E-6 -1.2274E-5 (-4.9347E-6,2.9369E-7) (-5.6714E-2,-9.6781E-4) 

��� 

1.0194E-6 -2.5531E-6 (1.5489E-7,9.0442E-8) (1.7046E-4,1.6457E-2) 

��� 

-1.9329E-7 -8.1659E-5 (5.9346E-8,-2.4012E-7) (-6.4543E-4,-3.0315E-4) 

��� 

-8.9968E-9 -2.8390E-6 (2.0766E-7,1.3814E-7) (4.2475E-5,1.1254E-3) 

��	 

-3.0027E-7 3.8167E-6 (-4.7644E-8,7.9099E-8) (1.0602E-3,-4.5839E-5) 

��
 

-1.4313E-8 -2.7981E-6 (3.2481E-8,-2.9219E-8) (4.0667E-5,-1.1326E-3) 

��� 

-6.0136E-8 -5.1658E-6 (5.0177E-8,5.9180E-8) (-3.0426E-4,1.5585E-6) 

���� 

-2.7427E-9 3.6700E-7 (-3.6618E-8,4.2500E-8) (1.5206E-5,-1.4109E-4) 

sꞌ 1.9521 2.3051 1.6600 1.2444 

�
  

0.47620 0.98249 0.59678 0.79334 

6. Conclusions 

This paper used the optimization method to present a general method for determining  

the conformal mapping from the unit disc onto the infinite domain exterior of a given 

Jordan curve, from the annulus domain onto the finite doubly-connected domain, from 

the exterior domain of two circles onto the exterior domain of two given Jordan curves. 

The method can be reduced to the construction and solution of the complex equations 
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� = ��. The ingenuity of the method is that it introduces the least square principle to 

transform the problem of solving the mapping function coefficients into a problem of 

determining the angles on the ζ-plane. Then the angles are set as the design variables of 

the mixed penalty function. The angles are arranged in the interval of $0,2%& in an 

increasing order, which greatly reduces the feasible region of design variables and makes 

it easy to evaluate the initial value of design variables. 

In practice, the power series approximations can be tried if the form of the maps are 

unknown. The performed numerical examples show that the calculation will achieve high 

accuracy as long as the number of the terms of the mapping function are large enough. 

The solution in our paper are suitable for solving domains without symmetry axes of 

coordinates. Except for the applications discussed in the paper, the method may be 

promising in addressing more conformal mappings from circular domains to given 

domains. 
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