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Abstract. In this paper, we provide an analysis on the partial overlapping order 
problem in a strip, i.e., whether a given partial order involving only part of the 
squares of the strip corresponds to a valid flat-folded state of the strip or not. On the 
contrary to the general intractability of partial orders, we investigated the partial 
orders onto some particular sets to obtain tractable results. To rapidly get access to 
the solution, our methodology is based on the abstracted visualized folded states 
rather than a mathematical explanation by matrix. In conclusion, a strip having at 
least three disordered squares aligning on the strip between any two of its ordered 
squares always corresponds to a final flat-folded state. 
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1. Introduction 

A variation of the strip folding problem called the partial overlapping order problem in 

a strip, is investigated in this research. It is expressed like this: A strip of size 1 × � with 

all its squares labeled in order from one end to the other is supposed to be completely 

folded to a flat state �� (folded to a plane) of size 1 × 1. Given a partial order � on a set 

P of squares, does there exist such a �� that the squares in P are ordered just as � from 

bottom to top?  

An instance is illustrated in figure 1. For the clarity, layers from bottom to top in the 

folded states are aligned from left to right in all the illustrations. P is composed of the 

shadowed squares in (a). When the input � is given as (6, 5, 3, 7, 9, 10), a corresponding 

valid �� can be achieved by a folding illustrated in (b). Following this folding, we can 

achieve �� with all the squares ordered as (1, 6, 5, 2, 3, 4, 7, 11, 8, 9, 10) from bottom to 

top. This �� respects the partial order �. As a counterexample, when given an � as (5, 3, 

7, 9, 6, 10), there exists no valid �� corresponding to it because this � causes a self-

penetration as illustrated in (c). It forces the continuous pairs (5, 6) and (9, 10) to cross 

each other and thus is invalid. 
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Even though some work on the enumeration and characterization of the total 

overlapping orders of a strip was done, there seems no research considering the partial 

orders. In [1], it is proved that the amount of valid total overlapping orders increases 

regularly (exponential in n), bringing the general decision on their validity. On the 

opposite, the increase of the number of partial orders depends on the order itself, thus 

may correspond to much more intricate cases. 

In this paper, we consider the cases when � is given on some particular sorts of Ps, 

where the length of the part of strip between every two squares ordered in �  is     

restricted. Based on the results of these particular cases, we give the proof for the   

validity of � in the cases where � is given on a P that at least three disordered squares 

exist between any two ordered squares. In other words, any such � corresponds to a  

valid ��. 

1.1. Some Basic Definitions and Notations 

The strip folding problem can be viewed as a restriction of the map folding problem. The 

original map folding problem was proposed by Jack Edmonds in 1997. It asks the 

computational complexity of the decision on whether or not a rectangle grid pattern 

composed of � × � squares can be folded flatly to the shape of a square of size 1 × 1. 

The grid pattern is called a map. It has two sides, a front and a back. Every non-boundary 

edge of the map, which is incident to two squares, is called a crease. Each crease is 

assigned as either a Mountain (“M”) or a Valley (“V”). The assignment of a crease 

represents the side of its two incident squares supposed to face each other after folding 

it. A Mountain-Valley assignment (An MV assignment) is composed of the assignment 

on all the creases. When � = 1, the map folding problem is also called the strip folding 

problem, and the map is called the strip. An available flat state of the map after all the 

creases are folded is called a final flat-folded state. We use ��  to denote a final flat-

folded state. Correspondingly, an available flat state of the map after folding only part of 

the creases is called a partly flat-folded state. 

 

Figure 1. An instance of the partial overlapping order problem in a strip. 

Unlike the decision problem based on the MV assignment, one of the variations 

concerns whether or not a given order on a set of squares corresponds to a valid �� with 

or without a given MV assignment. If the answer is positive, then the given order is called 

Y. Jia and Y. Zhao / Partial Overlapping Order Problems in a Strip 111



a valid overlapping order. This variation is called the overlapping order problem. In this 

paper, the discussion is of the case where � = 1 . We call this restricted case the 

overlapping order problem in a strip. Especially, when the given order is on a set 

includes all the squares of the map, the given order is called the total overlapping order. 

On the other hand, when the given order is on a subset of the squares, the order is called 

the partial overlapping order. This paper concerns the partial overlapping order in a strip 

with no MV assignment as the input. 

1.2. Related Work 

In the following, we list some remarkable results about the map folding problem and its 

variations. The original map folding problem remains unsolved when �,� ≥ 3, i.e., the 

computational complexity of the decision on whether an � × � map can be folded flatly 

to the size 1 × 1 remains unknown when �,� ≥ 3. For 2 × � maps, Morgan proposed 

an �����  time algorithm to decide the foldability [2]. Arkin et al. proved that the strip 

folding problem is solvable in time linear in the length of the strip [3]. 

As a general solution of the total overlapping order problem, Nishat provided an 

����� time algorithm to decide the validity of a given overlapping order of � × � maps. 

He also provided an �(������ ) time algorithm to enumerate all the possible 

overlapping orders corresponding to valid ��s [4]. When the target is a strip, another 

�(�)  time approach is provided in [5] to solve the decision problem. Furthermore, 

corresponding to a positive answer, a concrete folding process is also provided in their 

approach. However, the time complexity of the enumeration of the valid overlapping 

orders cannot be reduced to a polynomial scale even for the strips [1, 5]. 

In the original map folding problem, the only limit on the folding operation is no 

tearing, stretching, or self-penetrating. Every part of the map is flexible and bendable. 

As a result, the entire folding process may not be able to be divided into phases such that 

the partly folded states are flat at the end of every phase. This brings the difficulty to 

solve the problem by a reduction. To reduce the difficulty, Arkin et al. considered a 

restricted folding operation, which is called the simple folding [3]. The difference 

between a simple folding and a general folding is that a simple folding ensures the 

rigidity of every square. Concretely, in a simple folding, (1) the states before and after 

folding along a line are always flat; (2) only some continuously adjacent layers whose 

surfaces touch each other in pairs are folded along the line. Under this context, they 

provided linear-time algorithms to determine if an MV assignment can be folded to a 

size of 1 × 1  by simple folds for both strips and � × � maps. In fact, for the strips, any 

valid overlapping order achievable by a general folding is also achievable by a simple 

folding [5]. There are also researches concerning the general folding and the simple 

folding on generalized patterns instead of grid patterns [6, 7, 8, 9]. 

Another research direction considers the enumerative combinatorics about the strip 

folding. Koehler [1] and Lunnon [10] counted the possible final flat-folded states of a 

strip without mountains or valleys assigned to the creases. Legendre et al. discussed the 

relationship between foldings and the flat-folded states [11]. 

In an earlier study, we have investigated some partial overlapping orders in an 

� × � map. This paper focuses on the validity of some partial overlapping orders in a 

strip, which is essentially the decision on the existence of the valid total overlapping 

order corresponding to an input partial overlapping order. Generally, without any 

restriction or context, the decision problems on the total orders with partial orders given 
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as inputs are usually intractable. These orders are usually modeled as graphs so that the 

corresponding decision problem can be solved using the graph theory [12, 13]. In this 

paper, instead of deciding the tractability of general cases, we intend to find some 

tractable results of the partial overlapping order problem in a strip by restricting the input 

partial orders onto some particular sets. 

In the following sections, we will investigate the validity of the partial orders on 

some particular sets of squares. In Section 2.1, the condition for a valid total overlapping 

order will be introduced. In Section 2.2, we will show that the condition to the total 

overlapping orders is not feasible to the partial overlapping orders. In Section 2.3, we 

will define four sorts of particular Ps as the targets. In Section 3, 4, and 5, the validity of 

the partial order given on each � is respectively investigated. Then, as the most crucial 

result of this paper, for an � having at least three disordered squares aligning on the strip 

between any two of its ordered squares, we will prove that � is always valid, i.e., it 

always corresponds to a final flat-folded state. 

2. Preliminaries 

2.1. The Total Overlapping Order Problem in a Strip 

As introduced in Section 1.1, the total overlapping order problem in a strip asks whether 

a given order of all the squares of the strip corresponds to the overlapping of the squares 

in a final flat-folded state or not. A pair of squares labeled 	, 	 + 1 in a strip are called 

neighbors. We say a pair of squares whose surfaces touch each other in �� adjacent. 

Adjacent squares are supposed to be adjacent in the total overlapping order. For example, 

in the instance introduced at the beginning of the paper, 5 and 6 are neighbors. 1 and 6 

are adjacent in  �� according to the total overlapping order (1, 6, 5, 2, 3, 4, 7, 11, 8, 9, 

10). The counterexample in figure 1(c) shows that, when two pairs of neighbors penetrate 

each other, the corresponding overlapping order must be invalid. A precise description 

is given as Lemma 2.1. In [1], Koehler proved that the no penetration condition is in fact 

both the sufficient and necessary condition for a total overlapping order in a strip to be 

valid.  

Lemma 2.1. A total overlapping order is valid if and only if for any two pairs of 

neighbors respectively labeled 	, 	 + 1 and 
, 
 + 1, any of the following four orders (a) 

to (d) does not occur when i and j are either both odd or both even. 

(a) 	 <  
 <  	 + 1 <  
 + 1, 

(b) 
 <  	 + 1 <  
 + 1 <  	, 

(c) 	 + 1 <  
 + 1 <  	 <  
, 

(d) 
 + 1 <  	 <  
 <  	 + 1, 

The orders (b) to (d) can be viewed as a circular order of (a). For convenience, we 

say that two pairs of neighbors ordered as any of these cases form a penetrating pair and 

use a penetrating meander to refer to a pair of neighbors involved in a penetrating pair 

in the following. 

2.2. Even a Partial Order Without a Penetrating Pair Could Be Invalid 

According to the necessary and sufficient condition for a valid total overlapping order, it 

is natural to think of this question: Is the condition in Lemma 2.1 also the necessary and 
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sufficient condition for a partial overlapping order to be valid? The answer is negative. 

A counterexample is proposed as follows. Considering a given partial order � without 

any obvious penetration itself as (6, 1, 5, 3, 4) in a 1 × 6 strip. Corresponding to �, six 

possible all permutations of the six squares can be listed as: 

1. (2, 6, 1, 5, 3, 4) with penetrating pairs {1, 2} and {5, 6}; 

2. (6, 2, 1, 5, 3, 4) with penetrating pairs {2, 3} and {4, 5}; 
3. (6, 1, 2, 5, 3, 4) with penetrating pairs {2, 3} and {4, 5}; 

4. (6, 1, 5, 2, 3, 4) with penetrating pairs {1, 2} and {5, 6}; 

5. (6, 1, 5, 3, 2, 4) with penetrating pairs {1, 2} and {5, 6}; 

6. (6, 1, 5, 3, 4, 2) with penetrating pairs {1, 2} and {3, 4}, as well as penetrating 

pairs {1, 2} and {5, 6}. 

Because penetrating pairs exist in every possible total order, � cannot correspond to 

a final flat-folded state of the strip. This result reflects that the partial overlapping order 

problem in a strip is not trivial. There may exist intractable cases for the decision problem. 

First paragraph. 

Since the objective of this paper is to find some tractable results of the partial 

overlapping order problem, in the following, we will define four different kinds of 

squares sets and determine the validity of the partial orders on them. 

2.3. Definitions of the Partial Overlapping Order Problem in a Strip 

We consider the partial order overlapping problem in a strip whose squares are labeled 

from 1 at one end to � at the other end. For convenience, in the following, we use these 

labels to indicate the squares. In this paper, we study the partial orders on four sets of 

squares ��, ��, �	 and �
. We will prove the tractability of the decision problems on the 

validity of these partial orders. These sets are illustrated in figure 2 and defined as follows. 

The elements in ��, �� and �	 are certain whereas �
 is much more generalized. 

 

Figure 2. Four sorts of partial orders investigated in this paper. 

(1) �� = {4	+1, 4	+2 | 0 < 	 < �/4}; 

(2) �� = {4	+1 | 0 < 	 < �/4}; 

(3) �	 = {3	+1 | 0 < 	 < �/3}; 

(4) �
 = {��, ��,...,�� | ∀�� ,����,���� − �� ≥ 3, �� ≤ n}. 

��, ��, �� and �� are arbitrary orders given onto ��, ��, �� and ��, respectively. 

In the following, we will prove that (a) an �� is valid if and only if it involves no 

penetrating pair and (b) any ��, �� and �� are always valid.  
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In the following, we will give the results of the partial overlapping order problem in 

a strip corresponding to the inputs ��, ��, �	 and �
, respectively. For the clearness, in 

some of the following expressions where whether squares appearing in the given order 

or not is emphasized, we use the indication [�] to indicate a square labeled � appears in 

the given order (red ones in the illustrations in figure 3, figure 8, figure 10, figure 12 and 

figure 15) and use the indication _�_ (black ones in the same illustrations) if not. 

 

Figure 3. An instance of the folding process corresponding to an �� without a penetrating pair. (a) illustrates 
the ordered squares and how we separate the squares into groups; (b) illustrates the initial folded state 
corresponding to the groups and the folding process to fold this state to a final flat-folded state while respecting 
the given order. 

3. Solution of � and the Validity of an Arbitrary ��  

The squares labeled 4 	+1 and 4 	+2 comprise a pair of neighbors and may form 

penetrating pairs with other pairs of neighbors. Thus, penetrations may occur in every 

total order respecting ��. By Lemma 2.1, we should first check the existence of the four 

orders (a) to (d) in ��. If any of the four orders exist, �� should be decided as an invalid 

overlapping order. For the remaining �� s, we will prove their validity by proving 

Theorem 3.1. 

Theorem 3.1 �� is always a valid overlapping partial order given that it includes no 

penetrating pair. 

Proof. The proof for the validity of an �� with no penetrating pair is given by finding 

an available folding corresponding to such an ��. We first discuss a given 1 × �� strip 

�with an odd ��. The folding can be found through the following steps. 

Step 1. Suppose there is another strip �
�  with ��

� =(�� + 1)/2, whose square are 

labeled as 1� to (n� + 1)/2�������������� from one end to the other end. We define a mapping � from 

� to �
� . Under this mapping, {1} is mapped to 1� in �

� . The set comprised by every pair 

of elements 2� and 2� + 1 (1 ≤ 2� ≤ �� − 1) is mapped to � + 1������� in �
� . 

Step 2. Under the mapping defined in Step 1, for every integer 	 ≥ 0, 2� + 1�������� in �
�  

corresponds to 4	 + 1 in �� and 2� + 2�������� in �
�  corresponds to 4	 + 2 in ��. Therefore, the  
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mapping induces a total overlapping order ��
�  of �

�  corresponding to �� by mapping the 

order of the squares in �� to an order of the layers of �
� . There exists no penetrating pair 

in ��
�  by the condition that �� includes no penetrating pair. 

Step 3. By tracing the mapping � back, the final folded state of �
�  respecting ��

�  can 

also be considered as a valid partly flat-folded state of �. In this state, the crease between 

every pair of elements 2� and 2� + 1 remains unfolded whereas all the other creases are 

folded. The unfolded creases align on the same line (centerline) so that we can view the 

partly folded state as a reduced strip of size 1 × 2 and fold its crease as a valley. The 

state after this fold is of size 1 × 1 and respect ��. 

The three steps above lead to a valid folding corresponding to an ��  with no 

penetrating pair. For a strip � with an even ��, we only have to append an additional 

square adjacent to its neighbor square �� − 1  in the overlapping order and then 

implement the same steps. Theorem 3.1 is proven. 

To make these steps easy to understand, we use an example as illustrated in figure 3 

to show a concrete folding process. This instance involves a strip � of size 1 × 15 with 

its �� = {1, 2, 5, 6, 9, 10, 13, 14} as shadowed. The valid folding process is supposed to 

correspond to an �� = (10, 1, 13, 14, 2, 5, 6, 9). 

As illustrated in figure 3(a), corresponding to �, we have a strip �
�  with ��

� = 8. 

The mapping � from � to �
�  maps the squares sets indicated below �

�  in the figure to 

the singletons indicated over �
� . Each singleton is a rectangle formed by two continuous 

squares in � and considered as a single layer in �
� . The total overlapping order of �

�  

induced by �� is ��
�  = (6, 1, 7, 8, 2, 3, 4, 5). The left figure in figure 3(b) gives a valid 

flat-folded state of �
�  respecting ��

� . The right figure in figure 3(b) shows the 

corresponding partly flat-folded state of �. The unfolded creases align on the dashed 

line. We view these creases as a single crease and view this state as a strip of size 1 × 2. 

It is clear that in such a partly flat-folded state, the squares over the dashed line (which 

can be viewed as a single square of the 1 × 2 strip) comprise �� and respect ��. Then, 

we fold the squares below the dashed line to the right of the squares over the line. The 

folded state is shown in figure 3(c). It indicates a valid total overlapping order of � as 

([4], [6], [13], [14], [7], [9], [1], [2], _8_, _7_, _4_, _3_, _15_, _12_, _11_) corresponding to 

the input ��.From Step 2, it is also clear that for an �� including no penetrating pair, we 

can always find a corresponding folding in time linear in the size of the strip. Next, we 

give Theorem 3.2 for the validity of an arbitrary �� in a strip. 

Theorem 3.2 Any arbitrary �� corresponds to at least one final flat-folded state of 

the strip. 

Proof. By Theorem 3.1, we only have to prove the existence of an ��= (4��+1, 

4��+2, 4��+1, 4��+2,..., 4��+1, 4��+2) with no penetrating pair corresponding to any 

given �� = (4��+1, 4��+1,..., 4��+1). For every square 4	 + 1 (0 < 	 < (� − 2)/4) in 

��, we append its neighbor square 4	 + 2 as its adjacent square over it in the overlapping 

order. In this way, every pair of neighbor squares in ��  is adjacent to each other. 

Therefore, no penetrating pair would occur in ��. Theorem 3.2 is concluded. 
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4. Validity of an Arbitrary ��  

After proving the validity of the partial order given onto the set of squares labeled {4	 +

1}, we aim to prove the validity of an arbitrary �	 by a different method in this section 

with the assumption that �	 is the partial order given onto the set of squares labeled 

{3	 + 1} on the strip 	 of size 1 × �	. 

4.1. A Mathematical Analysis Using Matrices 

Any given order on the set of squares can be considered as a poset (�, <�), where � is the 

set of squares in �	 and <�  denotes the “adjacent under-over” relation. If � <� � holds, 

then � should be directly adjacent and below � in the final overlapping order. The final 

total order on the set of all squares forms a chain with respect to <�  . Moreover, when 

generalized to the ``under-over'' but not necessarily adjacent relation <. < on � can be 

computed as the transition closure of <� . Our objective is to extend the relation < to the 

set of all squares while avoiding penetration. 

The matrix expression of < (<�) is described as: Create a � × � logical matrix (each 

element is either 0 or 1) � for the given � squares. Its element ���, i.e., the element at 

the 	th row and 
th column denotes the truth value of the relation “Square 	 is below (and 

adjacent to) Square 
”. ��� is definitely different from ���, endowing the matrix with a 

“skew-symmetric” property. 

We now focus on the matrix of < , which is a power sum of the matrix of <�  

according to the transition closure correspondence [14]. 

 

Figure 4. Detecting pairs form 2 × 2 sub-matrices in the representation matrix. Matrices denoted by the red 

squares in the two illustrations correspond to whether {(2�, 2� + 1), (2�, 2� + 1)} and {(2� + 1, 2� + 2), (2� +

1, 2� + 2)} form penetrations or not, respectively. Both assignments have even number of 0s, defining two 
non-penetration cases. 

The non-penetration constraint is expressed as: for all the pairs {(2	, 2	 + 1), (2
, 

2
 + 1)} and {(2	 + 1, 2	 + 2), (2
 + 1, 2
 + 2)}, if their corresponding 2 × 2 sub-

matrices, i.e., all the grey enclosed areas of size 2 × 2 illustrated in figure 4 (where � is 

assumed to be even), do not have an odd number of 0s, then there is no penetration. 
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Following this expression, the task becomes: other than the elements fixed by �	, 

assign the other elements such that there is no odd number of 0s in every sub-matrix. 

The assigning should also make sure that the matrix actually corresponds to an 

overlapping order, which corresponds to this constraint: the matrix should be a power 

sum of a matrix with � − 1 elements assigned 1. 

Since �	 only occupies one in every two sub-matrices and only one element in every 

four elements of a sub-matrix, the best strategy is to give elements reasonable initial 

values and then locally revise the values of the elements in the sub-matrix with odd 0s. 

However, the revision simultaneously influences the order. Thus, each revision involves 

a group of small local revisions. 

The following method can be considered as the visualized version of the revisions 

to the matrix. In such a manner, we can always fix the type of penetrations and handle 

them differently. This enables us to find a fine way to do local revisions and rapidly get 

to the global solution. 

4.2. Workflow of Our Solution 

In all the following illustrations, the overlapping rectangles of size 1 × 2 are indicated 

by parallel vertical line segments in the length 2. The horizontal line segment passing 

through all the midpoints of these line segments is called the centerline. 

�	 would not include any penetrating pair itself because no neighbor squares are 

involved in �	. Without loss of generality, we assume that �	 is even. A strip whose �	 

is odd can be folded in the same way as the strip of 1 × (�	 + 1) size with the last square 

removed. 

The strategy to obtain a valid folded state of 	 respecting �	 can be concluded as 

four steps. The concrete handling in each step will be respectively introduced in the 

following sections. 

Step 1. Build a mapping like we used for �� from 	 to 	
� . This mapping induces a 

partial order �	
�  on 	

� .  

Step 2. Choose a pseudo folded state of 	
�  such that in this state, no spiral exists, 

and only two sorts of specialized penetrating pairs exist. “pseudo” refers to the fact that 

some penetrations may exist in such a state. The definition of spirals will be introduced 

in Section 4.4.  

Step 3. Use split planes to separate the pseudo folded state obtained in Step 2 to sub-

parts (as illustrated in figure 9(a)), so that each sub-part has the penetrating pairs all 

aligning either above or below the centerline �. Respectively find the valid flat-folded 

state of each sub-part. For convenience, following we say that each sub-part is supposed 

to have the penetrating pairs all aligning on the same side.  

Step 4. Join the valid flat folded states of the sub-parts to get the valid final folded 

state of �	.  

4.3. The Mapping from 	 to 	
�  

Using a similar mapping as we introduced for �� in the last section, 	 is firstly mapped 

to another strip 	
�  whose every layer is comprised of two neighbor squares. 	

�  is of size 

1 × n	
�  where n	

� = �	/2. Its squares are labeled as 1� to �	/2������ from one end to the other. 

There exists a mapping � from 	 to 	
� . Under this mapping, every {2� − 1, 2�} (1 ≤

2� ≤ �	 ) is mapped to ��  in 	
� . An instance is illustrated in figure 15 to help the 
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explanation. �	 is given as (1, 7, 13, 4, 10, 16). The sets of the squares in 	 indicated 

below 	
�  are respectively mapped to the elements of 	

�  (single layers in the shape of a 

rectangle of size 1 × 2) indicated over 	
� . 

Similar to the induced total overlapping order mentioned in Section 3.1, the mapping 

from 	 to 	
�  induces a partial overlapping order �	

�  of 	
� , which is an order onto the set 

{3j + 1��������, 3j + 2�������� | 0 ≤ 
 ≤ �	/3}. Since 3j + 1�������� and 3j + 2�������� are a pair of neighbors, two 

such pairs may form a penetrating pair in a pseudo folded state of 	
� . For example, the 

mapping of the instance in figure 15 induces a partial order �	
�  = (1� , 4�, 7�, 2�, 5� , 8�) of 	

� . In 

any of its flat state, two pairs of neighbors {(1�, 2�} and {(7�, 8�)} must form a penetrating 

pair. 

 

4.4. Choose a Pseudo Folded State of  	
�   

We first choose a pseudo folded state of 	
� . The choice of the state respects the principle 

that no spiral formed by more than 4 layers exist. The description of spirals can be 

detailed by the overlaps of spiral states, which satisfy that: either (a) the pair (	+2, 	+3) 

forms an adjacent pair with 	, 	+1 respectively folded to the two sides of the adjacent 

pair, as shown in figure 5, or the other half, (b) the pair (	, 	+1) exchanges the role with 

(	+2, 	+3) in (a). 

 

Figure 5. Half of the possible spiral states. The other half is achieved by exchanging (�, 

�+1) and (�+2, �+3). 

 

Figure 6. The desired flat-folded states of four continuous layers. 
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Figure 7. The folded states without spiral. 

This non-spiral principle can be realized by locally restricting the folded state of 

every four continuous layers. Concretely, every four continuous layers of 	
�  are desired 

to be folded to a zigzag, a nest, or a juxtaposition, as shown in figure 6. The realization 

satisfying this principle is illustrated in figure 7, showing some possible choices of the 

folded states of {1, 2, 3, 4} corresponding to the partial orders given on {1, 2, 4}. In these 

illustrations, except for two zigzags (1, 2, 4) and (4, 2, 1), each of the rests forms a nest. 

Then, for the folded state of {2, 3, 4, 5} along the other side, we indicate the possible 

arrangements of 5 using arrows, showing that in some cases, juxtapositions may be 

produced as well. Referencing the mapping defined from 	 to 	
� , any four continuous 

layers {	̅, 	 + 1�������

, 	 + 2�������

, 	 + 3�������} in 	
�  must have one layer or two layers not involved in �	

� . 

Hence, every four continuous layers of 	
�  can be arranged following the illustration, i.e., 

to a zigzag, a nest or a juxtaposition.  

Based on the local arrangement, we have the following lemma for the pseudo folded 

state of 	
� . 

Lemma 4.1 There always exists a non-spiral state of 	
�  respecting �	

� .  

Proof. Such a pseudo folded state can be achieved by a step-by-step process where 

each time the next four layers are appended to the folded state. Since in figure 6, we have 

shown that whatever the given order is, the first five layers have a corresponding 

arrangement. Since the next layer, 6, is disordered, we can just choose one of the possible 

positions referencing the arrangement of 3, 4, 5 to avoid producing a spiral. Since we do 

not mind the penetrations, the possible choices for the ordered 4, 5, 7 are the same as 1, 

2, 4. By a mathematical induction, along such a process, every continuous four layers 

can be arranged without a spiral because a disordered layer must exist in the four-layers-

tuple. This lemma is concluded. 

A pseudo folded state of 	
�  defined by Lemma 4.1 is chosen in Step 2. In a nest, a 

neighbor pair locates inside another neighbor pair. We use inner pair and outer pair to 

refer to the neighbor pairs, respectively.  

It should be remarked that an appropriate pseudo folded state matching 	
�  is not 

trivial, i.e., other than the unavoidable penetrations (the neighbor pairs violating Lemma 

2.1 in �	
� ), an induced 	

�  sometimes must involve other penetrations. For example, we 

consider the four layers respectively formed by {[11], _8_}, {[13], _14_}, {_5_, _6_} and 

{_3_, [8]} in the instance illustrated on the right of figure 15(b). Only the disordered layer 

of 5 and 6 can be moved, and once it is moved to the left of {13, 14} to avoid the 

penetration of {5, 6, 7, 8} and {13, 14, 15, 16}, then on the other side, {3, 4, 5, 6} and 

{11, 12, 13, 14} would form a penetrating pair, as shown in figure 8. Such penetrating  
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pairs have the property that even though they can be avoided by moving some disordered 

layers, the moving must cause other penetrations. 

 

Figure 8. Moving the nested penetrating pair causes penetration on the other side of the centerline. 

4.5. The Folding for a State Whose Penetrating Pairs Aligning on the Same Side 

The next objective is to prove that all the penetrating pairs can be taken away while 

respecting �	 by folding some layers along the centerline �. �	
�  can always be separated 

to sub-parts. The principle is, each sub-part corresponds to a folded state with penetrating 

pairs aligning on only one side and with no spiral. For example, one of the possible two 

sub-part-separations of a pseudo folded state is illustrated in figure 9. Note that the layers 

in a sub-part can be disconnected because the separating line may intersect at multiple 

points with the folded state of �	. 

 

Figure 9. Separate the folded state obtained in Step 2 to sub-parts. 

To simplify the entire proof of the existence of flat-folded states for any �	, we first 

provide the folding process to fold each sub-part to a valid folded state in this section. 

For convenience, we use � to indicate a sub-part. Without loss of generality, the 

penetrations in � is assumed to be under the centerline. In Section 4.6, we will show that 

we can connect the folded sub-parts together without new penetration, so that we can 

achieve a final folded state of 	 respecting �	. 

� is handled by the following process, which is supposed to be repeated until no 

penetrating pair exists any more. 

1. Find the innermost penetrating pair. A penetrating pair formed by neighbor pairs 

�_	� and �_	� is called innermost if there exist no penetrating pair formed by �_
� and 

�_
� where either �_
� is nested in �_
� or �_
� is nested in �_	�.For example, {1, 2} and 

{3, 4} both form penetrating pairs with {7, 8} in the left figure in figure 15(b) while the 

one formed by {3, 4} and {7, 8} is treated as the innermost one.  

2. Fold either neighbor pair of the innermost penetrating pair along the centerline 

with obstacles handled at the same time. By obstacles we mean the layers which would 

form new penetrations during the fold.  

Now putting the handling of obstacles aside, our basic handling of the penetrating 

pairs is divided into three cases as illustrated in figure 10, where the moved layers are  
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indicated by the segments colored red. The division is with respect to the ordered layers 

in the neighbor pairs. When the order matters, the ordered layers are indicated by colored 

numbers. These three cases exhaust all the possibilities. The left column lists the 

penetrating states and the right column gives corresponding solutions. The penetrating 

pairs �_	� (layers labeled from 	�) and �_	� (layers labeled from 	�) are supposed to be 

handled. Without loss of generality, we fold the layers of �_	�  and assume the non-

existence of obstacles. The first case (a) and the second case (b) correspond to the same 

folded state where 	� + 4 is located on the right side of 	� + 3 but with different squares 

ordered. Case (a) is the illustration with 	� + 2 ordered (indicated by the red script), 

while in (b), either {	�, 	� + 3} (indicated by the red script) or 	� + 1 (indicated by the 

blue script) is ordered. In the case (b), we only show the solution when the layer {	� −

2, 	� − 1} locates on the right side of {	�, 	� + 1}. The converse case corresponds to a 

solution where 	� and 	� + 1 exchange their positions, so as to avoid penetrations formed 

by {	� − 1, 	�} and {	� + 1, 	� + 2}. In the third case (c), no matter which square in 	� 

appears in the order, the handling is always the same. The illustration explains the 

invariance of the order of the squares in �	. The feasibility to apply these operations is 

based on the non-spiral restriction, which will be detailed together with the handling of 

obstacles in the proof of Lemma 4.3. 

To show an example, in figure 15(c) and (d), the penetrating pairs formed by 

{1, 2, 3, 4}, {5, 6, 7, 8} and {13, 14, 15, 16} are differently handled. (c) gives the handling 

when {13,14,15,16} is folded while the two figures in (d) give the handlings when 

{5, 6, 7, 8}  and {1, 2, 3, 4}  are successively folded to avoid the penetration with 

{13, 14, 15, 16}. 

The rest cases which cannot be handled with only the basic handlings are taken as 

cases with obstacles. 

Concretely, the obstacles refer to the pairs forming new penetrating pairs with other 

tuples when we intend to use the basic handling. In such cases, the obstacles are supposed 

to be handled before the handling of penetrating pairs. When obstacles exist, the 

obstacles have to be removed before the basic handling. For single obstacles, we use left 

folds or right folds illustrated in figure 11 to remove them. 

As an example, when folding {14, 15} as illustrated in the left figure in figure 15(c), 

it certainly intersects with the layers formed by {9, 10, 11, 12}. In this occasion, the four-

tuple {9, 10, 11, 12} forms a single obstacle and is supposed to be folded by a right fold 

as in the right figure in figure 15(c). 
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Figure 10. The basic operations to remove the penetration. 

 

Figure 11. The left fold and the right fold. 

 

Figure 12. Multiple obstacles handled at the same time. 
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When multiple obstacles exist, the concrete operation to remove all the obstacles is 

explained by the process illustrated figure 12. This example details the possible 

combinations of non-spiral obstacles, which follows the pseudo initial state. The only 

possible position of obstacles is shown in the first illustration. All the obstacles must be 

surrounded by either neighbor pair of the penetrating pair because a neighbor pair formed 

by an outside layer and an inside layer of the neighbor pairs would form a penetration 

with the penetrating pair. Based on our assumption that the currently handled penetrating 

pair is always the innermost one, any two obstacles would not penetrate with each other. 

Thus, the obstacles can only be combined in a nested way or in a juxtaposed way. For 

example, in figure 12, the obstacles are classified to the sets (��, ��, �	). �� is nested in an 

obstacle in �� and the two obstacles in �� are juxtaposed together. The ordered layers are 

colored red and supposed to keep their order after the handling. For an obstacle with a 

square on the left side and below the centerline involved in the given order, a left fold is 

supposed to be applied. Similarly, when such a square on the right side is involved in the 

given order, a right fold is supposed to be applied. When the ordered squares are over 

the centerline, both the left fold and the right fold are available. This instance shows that 

such handling of obstacles would not change the given order. Moreover, because the 

handling of every obstacle only locally changes the folded state around itself, no new 

penetration would be produced. After all the obstacles are handled, the penetrating pairs 

are removed by the basic handlings. Sometimes after the handling of an inner penetrating 

pair, the outer penetrating pairs may have their penetration moved to another place, as 

illustrated in figure 13. In such cases, the handling of them keeps unchanged, i.e., they 

are handled as if the penetrations are not moved. The entire handling of � is a repeating 

process of the above handlings. 

 

Figure 13. An example of the moving of the outer penetrating pairs after an inner one is handled. (a) indicates 
the initial positions of two penetrating pairs. (b) indicates the state after the inner penetrating pair is handled. 
The penetrating points of outer penetrating pairs are painted red. (c) shows a possible handling of the outer 
penetrating pair, which still follows the initial penetrating. 

Lemma 4.2 The above process leads to a valid folded state of � without penetration. 

Proof. To prove Lemma 4.2, it is sufficient to prove that the process of handling the 

obstacles and removing the penetrating pairs is always feasible without producing new 

penetrations. Because all the obstacles are shown to be dealt with left folds and right 

folds along the centerline which only changes itself, no new penetration would be 

produced. Then, as illustrated in figure 10, the step-by-step removal of penetrating pairs 

also would not form any penetration along the centerline. It only remains to prove that 

such a process would not produce penetrations on the above side, which is the same with 

the next sub-part connected with � (if exists). By our assumption of non-spiral, the 

analysis of the penetration on the upper side can be induced from the arrangement on a 

gadget of length 1 (the ones of length 2 can be dealt as obstacles) with the connected 

layer from different directions, as illustrated in figure 14. We can only talk about the 
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gadget because in a trivial case as illustrated, all the basic handlings can all be applied 

below it. All the possible positions of such a gadget are checked one by one for the three 

basic cases (a), (b) and (c), where the locally trivial cases are omitted. A folding is 

feasible if it keeps the gadget not penetrated with the removed squares and the relative 

position of its direction lines unchanged. There are two possibilities for both (b) and (c) 

with respected to the square ordered in �	 in the gadget. All the other sophisticated cases 

can be achieved by finitely combining such gadgets together. The non-spiral condition 

permits us to adjust the preceding or the succeeding two squares of an ordered square. 

Along this way, all the foldings can be proven feasible. Lemma 4.2 is then concluded. 

 

Figure 14. An instance of the folding process corresponding to an ��. 

As an example, in figure 15(c) and (d), the above process is realized by folding {14, 

15} and {2, 3}, {6, 7}, respectively. The process shown in (c) leads to the folded state in 

the left figure in (e). The figure on the right side gives the final folded state. 
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Figure 15. An instance of the folding process corresponding to an ��. 

4.6. Joining the Sub-parts 

After all the sub-parts respectively reach the valid folded states (even though some layers 

may be still of size 1 × 2), they are supposed to be joined together. 

We first consider the case that the separating points remain visible after the 

penetrations in every sub-part are removed. Because we always have the choice to fold 

either pair of layers of a penetration pair, we can find a folding after which all the 

separating points keep their positions relatively unchanged. In other words, the order of 

the separating points on the separating line is kept. This invariance ensures the 

connectability of the folded sub-parts.  
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Figure 16. The joining process with respect to a single separating point. 

When two parts are supposed to be joined together, one part is supposed to be 

reflected with respect to the centerline, so as to achieve a folded state where handled 

layers (when removing the penetrations) locate on the same side of the centerline. When 

there is only one separating point, two parts can be simply joined by first moving the 

separating point to the other side, then symmetrically reflecting this part with respect to 

the centerline, and finally gluing the two parts together. A joining for the instance given 

in figure 9 is illustrated in figure 16, where the sub-part 2 goes through the reflection. To 

avoid the possible penetration induced by moving the separating point, we can always 

move the separating point before removing all the penetrations in a sub-part, so that the 

penetration related to the separating point can be handled with other penetrations at the 

same time. 

When multiple separating points exist, the reflection may cause new penetrations. 

To deal with such cases, in the following we give the handlings corresponding to whether 

two separating points are aligning on the same side of the centerline or on different sides. 

The cases where more separating points exist can then be dealt with the same method, 

with the feasibility given by the mathematical induction. 

(a) When two separating points align on the same side of the centerline, in one of 

the two separated sub-parts, the positions of the two separating points would be 

exchanged before the handling of the penetration. By choosing the sub-part supposed to 

have squares exchanged, we can keep the local exchange of separating points either 

inducing a new penetrating pair on the same side with the other penetrations of the same 

sub-part, or leading to a remove of an exist penetrating pair. In either case, it would not 

influence the other penetrations and the non-spiral state because this penetration is 

Y. Jia and Y. Zhao / Partial Overlapping Order Problems in a Strip 127



supposed to happen at the end of this sub-part. The handling of penetrations still follows 

the discussion in the last section. 

(b) When two separating points align on different sides of the centerline, also, we 

first exchange the positions of separating points of one sub-part and then deal with the 

penetrations. The exchange would not influence the other obstacles and thus the handling 

of the second part still follows the discussion in the last section. An example is illustrated 

in figure 17 and 18. The positions of the separating points � and � are first exchanged in 

the second part. Then, the two parts are respectively handled and joined. If the separating 

points become invisible after the handling of penetrations, we first join them following 

the above method. The result of such a joining may still have penetrations of the two 

layers of size 1 × 2 connected by the separating point. These penetrations are supposed 

to be handled after all the other layers of size 1 × 2 are folded to 1 × 1, which will be 

introduced later in this section. In such a state, since a neighbour pair has at least two 

freely movable squares and the non-spiral condition is kept during the entire folding, the 

penetration can then be removed by the basic operations introduced in the last section. 

According to the fact that all the other layers are folded to size 1 × 1, no obstacle would 

exist. 

Using the above method, all the folded sub-parts can be joined while respecting their 

total order in �	. After the joining, all the remaining 1 × 2 layers should align on the 

same side. Conversely, on one side of the current state, except for the layers at the 

separating point, all the other layers should be of size 1 × 2 (non-handled layers). Similar 

to the handling of obstacles, these remaining 1 × 2 layers are folded by left folds and 

right folds to keep �	, as illustrated in figure 15(e). The 1 × 1 layers at the separating 

points can be handled in a similar way, only with an additional twist if penetrations 

happen, as illustrated in figure 17. 

 

Figure 17. An instance of a right-fold at a separating point. 

After such folds, the valid folded state of the entire strip can be obtained. The 

feasibility of the folding process is concluded in Lemma 4.3, its correctness follows by 

the connectability of sub-parts and Lemma 4.2. 
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Figure 18. The joining process when multiple separating points exist. 

Lemma 4.3. Any arbitrary �	 can correspond to a valid flat-folded state of the strip. 

5. Validity of an Arbitrary �� 

�
  is a generalized version of ��  and �	 . By our definition, �
  is onto the set �
 =
���,��, ⋯ , ��|∀�� ,����,���� − �� ≥ 3, �� ≤ �� . When ∀�� ,����,���� − �� = 4 , 

deciding the validity of �
  is reduced to deciding the validity of �� . Also, when 

∀�� ,����,���� − �� = 3, deciding the validity of �
 is reduced to deciding the validity 

of �	. 

We will first prove the validity of an �  with an additional condition that 

∀�� ,����,���� − �� = 3 or 4, as presented in Lemma 5.1. Based on this result, we then 

prove the validity of an arbitrary �
 without any additional condition. 

Lemma 5.1. An arbitrary � given onto the set {��,��, ⋯��|∀�� ,����,���� − �� =

3 or 4, �� ≤ �} is a valid overlapping partial order. 

Proof. � can be folded following a similar process as the handling for �	. Each two 

continuous squares in 
 (assumed with even number of squares) are mapped to a layer 

in with �

� = �
 2⁄ . Under this mapping, every pair of elements 2� − 1 and 2�(1 ≤

2� ≤ �
) is mapped to �� in 

� , which is formed by �


� . Then, 

�  is folded following the 

steps we fold 	
� . During the folding process, once a penetrating pair appears, it can be 

handled in the same way as we introduced for 	 because there always exist the same 

number of squares that can be freely arranged with 	. Thus, � always corresponds to a 

valid folded state of the map. 

 

Figure 19. The zigzag formed by {���� − 2, ���� − 1, ����}. 
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Based on Lemma 5.1, we can give the conclusion as Theorem 5.2 on the generalized 

set �
. 

Theorem 5.2 An arbitrary �
  given onto the set 
���,��, ⋯ ��|∀�� ,����,���� − �� ≥ 3, �� ≤ �� is a valid overlapping partial order. 

For every pair of �� ,���� with ���� − �� > 4 in �
, consider a zigzag formed by 

{���� − 2, ���� − 1, ����} as ���� as illustrated in figure 19. Then �
 can be folded using 

the same method as the folding of � in Lemma 5.1. 

6. Conclusion and Future Work 

The topic is the partial overlapping order problem in a strip, which is a variation of the 

well-known strip folding problem. Unlike the total overlapping order problem in a strip, 

the validity of the partial overlapping order cannot be decided by whether or not 

penetrating pairs exist in the order. We first explained this conclusion by giving a 

counterexample. Then, we investigated four sorts of partial orders and their validity. The 

first three are on typical sets of squares, and the fourth is a generalized partial order 

inspired by them. We showed the tractability of the partial overlapping order problem 

for these partial orders.  

The partial overlapping order problem of other sorts of partial orders would be 

considered as an open question. Furthermore, are the results for the partial overlapping 

order problem in a strip able to be generalized to the partial overlapping order problem 

in a map of size � × � would be considered as another interesting topic. 
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