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Abstract. Transition is the basic phenomena of complex flow regime changes in 
fluid mechanics. So far, the axiomatic expression and rigorous mathematical 
description of transition and separation are important basic scientific problems, 
which are also of great significance to the development of Applied Science. This 
article obtaining the basic conditions and general conditions for transition through 
the excited state theory of flowfield, which is derivation based on the N-S equations, 
combined with Euler’s description point of view, applied tensor analysis and with 
the help of the basic principles of superposition states of quantum mechanics. The 
research of this paper provide a theoretical view for the study of turbulence 
mechanism. 
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1. Introduction 

The flow state can usually be divided into laminar and turbulent. With the discovery of 

two flow regimes[1-2] and the concept of the boundary layer, the transition has become 

a major basic scientific problem that many scholars have been paying attention to for a 

long time and have not been solved. It characterizes the continuous change process of 

the system from a simple hierarchical stable state to a complex chaotic state. Today, 

although the vast number of scientific and technological workers in the field of fluid 

physics have invested a lot of manpower and material resources in research, they still 

have not found a universal theoretical method that can solve all turbulence problems. 

Since laminar and turbulent have a huge impact on frictional resistance, noise, fluid-

structure coupling, and other characteristics[3], prediction accurately of the transition 

position not only has great engineering practical significance for the design of aircraft, 

engines, and underwater vehicles, but also very important academic value[4]. 

Experimental methods are effective means of research. Croci et al.[5] studied the 

laminar boundary layer separation. Chandra et al.[6] used particle image velocimetry to 

study the laminar turbulent transition. Miro et al.[7] quantified the effects of transition 

models on flow stability characteristics. Istvan et al.[8] studied the effect of free flow 

turbulence intensity. Wei et al.[9] studied the boundary layer transition. Although the 
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experiment can accurately show the physical process, due to the limitation of 

experimental conditions, the experimental results may have a certain deviation. 

Because the numerical method can vividly display the calculation results, this 

method has attracted more and more attention from scholars. Sengupta et al.[10] solved 

the N-S equation to study the effects of forced frequency and free flow turbulence caused 

by unfavorable pressure gradients on the plate geometry. Salimipour[11] studied a 

numerical simulation of the transitional flow around different airfoils. Ni et al.[12] 

studied boundary-layer transition. Hosseinverdi et al.[13] carried out highly resolved 

DNS. Jiang et al.[14] used a DNS method to check the flow around a square cylinder for 

different Reynolds numbers. 

In short, since the boundary layer theory was put forward, many scholars have 

carried out research on transition problems from different levels, improved the accuracy 

of numerical calculation methods, and made up for the lack of experimental simulation 

capabilities. According to Euler's description, the velocity can be regarded as the sum of 

the average velocity and the fluctuation velocity. Based on the theroy of superposition 

state, the general law of transition is obtained, and the theoretical results are consistent 

with the experimental results. 

2. Mathematical analysis of Transition 

According to the N–S equations, the velocity field ui satisfies: 
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where ρ is the density, and fi is the body force. σij is the stress state tensor, which is: 
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here p is the pressure, δij is the Kronecker symbol, and µ is coefficient of dynamic 

viscosity. 

According to the Reynolds equation[15-16], the velocity[17] can express as 

(Figure 1): 

i i i
u u u   (4) 

where 
i

u  is the fluctuation velocity and 
i
u  is the average velocity. 

 

Figure 1. Schematic diagram of velocity.
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The features of transition[18] are randomness and irregularity. Let 
h

U( x , )  be a 

neighborhood of point 
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x . A laminar fluid with 
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excites j
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as 0  , xk gives the coordinates of the transition points. 

According to the concept of the superposition state[19] (Figure 2): 

 

 

 

Figure 2. Superposition state. 

Excited state is that the fluctuation velocity has been generated. We set up a second-

order tensor satisfies: 

 M

j

i j i i ju u u ,u,   J  (8) 

then 
j

i
  is called the velocity strain tensor. 

From equation (6) and (7), 
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where uk is the velocity field of the flow. 

In the unexcited state, 0
i

u  . By equation (1) and (2), the unexcited state equations 

are: 
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 is the external force field in unexcited state, 
1( )

ik  is the stress 

state tensor in unexcited state, and δij is unit constant tensor. 

In the excited state, introducing the excited ratio tensor: 
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where 
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where 
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For the unexcited state, the gradient of the stress tensor of the flowfield could be 

expressed as: 
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For the excited state, the gradient of the stress tensor of the flowfield could be 

expressed as: 
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The stress difference between two states is: 
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The final excitation law is: 
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where 1   . 

We introduce the degenerate condition[20] to solve above equations. There is: 
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where 1   ; Pi is difference of the pressure gradient. Let the fluctuation velocity 

gradient is 
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Let ζ evaluate the spatial variation rate, and 
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where L  is the Laplace operator. At the same time, we have: 

1

1

,i

i ,

P p

t



  

 
      

i

i
L

 (31) 

where 
, j

j ,

u  
i

i

 is fluctuation velocity expansion. 

That if 0
k

u  , then 0
,i

i ,

P 
i

i

; if 0
k

u  , then: 

   
 

   2
1   1

1 1

,i k ki ki

i , ,k i k k i i k k i

n
P p p u u C np f f C

n n

 
                           

i

i i

 
(32) 

where n is the spatial dimension. 
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Transition represents the generation of irregular pulsation speed, and its initial value 

is very small. Therefore, 0 0 0
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all points xj satisfying the above equation, which denotes the transition position. 

 

Figure 3. Wall condition. 

According to equation (30), we could get: 
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where ni is the outer normal vector of the solid boundary(figure3). 

If the system is excited, there is a scalar physical variable   that satisfies: 
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Now we find that: 
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where 
p

C  is the pressure coefficient, x is the transition positions, and 0   is 

infinitesimal, . 

Due to the above conditions, the transition point should meet: 
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3. Experimental Validation 

In the one-dimensional flow experiment, the airfoil NACA2412 with an inflow velocity 

of 30m/s was employed, and 2  

�

. The experimental device is shown in figure 4, and 

the pressure curve is shown in figure 5. 
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Figure 4. Experimental device. Figure 5. Pressure curve.

Figure 6. Second derivative curve. Figure 7. The second derivative curve of pressure. 

 

The derivative curves are shown in the figure 6 and figure 7. According to the results 

in figure 6 and figure 7, the predicted value is x = 0.403 with transition and x = 0.508 

with full transition. 

The experimental results are shown in figure 8. The value is x = 0.405 with initial 

transition and x = 0.502 with full transition. 

 
Figure 8. Experiment result. 

The prediction accuracy is: 
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According to the above calculation results, both errors are less than 2%. 

Many literature studies show that it is possible to predict the transition position 

according to the measurement of surface pressure distribution. Popov et al[21] found a 

method to determine the transition position according to the pressure distribution, and 

the transition point is the maximum curvature in the pressure distribution, and the result 

is shown in figure 9. Boutilier et al[22] measured the pressure distribution of NACA0018 

airfoil from 5×104 to 2.5×105 Reynolds numbers through experiments, and studied the 

transition characteristics on the airfoil surface, they found that the transition, separation 

and reattachment occurred near the pressure plateau, the phenomenon is shown in figure 

10. 

 

 

 

Figure 9. Cp distributions of 

the WTEA-TE1 airfoil and the 

second derivative of Cp.

Figure 10. Surface pressure data (Re = 

150,000 and 10   ). 

4. Conclusion 

In order to determine the transition positions, this paper uses the superposition state, and 

modern applied mathematics methods to propose the fluid excited state method. At the 

same time, this paper puts forward the principles of mechanics, obtains the basic tensor 

equations of excited states, and proposes the concept of degenerate form to establish the 

law of transition. In addition, this paper obtains the excitation degeneracy through 

discrete time and space and put forward the basic theory of transition.  
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