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Abstract. This paper mainly studies the existence of multiple positive solutions of a
class of Riemann-Liouville fractional g-difference equations under the four-point
boundary value condition with p-Laplacian operator. The existence of two positive
solutions of the g-difference equation is verified by the monotonic iterative method.
Finally, an example is used to prove the validity of the main results obtained.
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1. Introduction

The calculus invented by Newton and Leibnitz is the watershed between modern
mathematics and ancient mathematics. Fractional calculus is a related theory about
differentiation and integration of any order. It is the extension of integer-order calculus.
From g-differential calculus and quantum after the calculus was proposed by Jackson,
it attracted the attention of many scholars to the g-difference equation. Quantum
calculus is called infinite calculus. It replaces the classical derivative with a difference
operator and can be used to calculate non-differentiable functions. In addition to the
application of g-difference to orthogonal polynomials, combinatorics, hypergeometric
functions and other mathematical fields, g-differences are increasingly used in natural
sciences and engineering [1].

At present, fractional differential equations with p-Laplacian operators have
received widespread attention due to their outstanding applications in viscoelastic
mechanics, non-Newtonian mechanics, electrochemistry, fluid mechanics, and
materials science. The related theoretical research on the boundary value problem of
g-differential equation with p-Laplacian operator is not only the need of the
development of differential equation theory, but also the need of social production and
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life. It is hoped that its related theories can play a certain role in practical applications
[2, 3].

In recent years, some preliminary results have been achieved:

In 2018, Bai, C. [4] studied the following problems with p-Laplacian operators:

!
(o, (D5u0)) + (eu(e)=0, 0<r<1,
u(0)= Dg,u(0)=0, “DJu(0)="Df'u(1)=0
with0< f<1,2<a <2+ f anda, fare real number, Dy, and D(;B are the
standard Riemann-Liouville fractional derivative and Caputo fractional derivative of

orderax , [ respectively, p>1, f € C([a,b]x R, R), which used to prove the

existence and uniqueness of nontrivial solution with fractional boundary value using
the Banach contraction mapping theorem and Guo-Krasnosel'skii fixed point theorem

In 2019, Zhou, B. [5] studied the following high-order fitting fractional boundary
value problems with p-Laplacian operators:

T )= A )
u(0)=0, [p, ([ )]"(0)=0,

o], =0, (o, )], o

with n—1<a<n, T 0? "is a newly defined fractional derivative called "integrated

fractional derivative". Using the Guo-Krasnosel’skii fixed point theorem, sufficient
conditions are established to ensure the existence of a positive solution to the above
boundary value problem.

For some basic theories and applications of fractional boundary value problems
with p-Laplacian operators, please refer to the literature [6-18].

In 2020, Zhou, J. et al. [19] studied the boundary value problem of fractional

g-difference equations:
D;’u(t)+ Fle,ut)v(e)=0, te(0,1),
u(0)=0, D,u(0)=D,u(l)=0,
where) < g <1,2<a <3, the function f(t,u,v)may be singular atv=0 and

t = 0,1 around. The iterative algorithm is used to obtain the existence and uniqueness

of the positive solution of the boundary value problem.

For some basic theories and applications of boundary value problems of fractional
g-difference equations, please refer to the literature [20-25].

Inspired by the above literature, we discuss the following equation:

D2 (g, (DPx)e))+ hr, x(1)) =0, 0<i<1,
x(0)=0, x(1)= aqux(f), Dqﬂx(O) =0, Dqﬂx(l) = quﬂx(n),
(1)



58 C. Jiang and C. Hou / Riemann-Liouville Fractional g-Difference Equation

B
where he C([O,l]x [0,+oo), [(),+OO)), an , D) and qu stand for the
Riemann-Liouville fractional q-derivative, @ Y is p-Laplacian operator, p>1,

0,(s)=|s""s. 9,' =0,

1, 1* :1,1<a,ﬁ£2,}/:E,0<§Sl,0<77<1,a,be[0,+oo),
P q 2 2

p-1
al’,(B)E 2 <rq(%j,bp‘n“ <1.

2. Preliminaries
In this section, let g € (0,1), some related definitions and lemmas are given.
1 _ m
Definition 2.1[26] [m], = l—q’ meR.
—-q

Definition = 2.2[26] The g-similar definition power function (n—m)k,
keN,={0,12,.. }is:

k-1

(n—m)(o)=1, (n—m)(k)=H(n—mqi), ke N, mmneR.

i=

Generally, y € R,

(n—m)" = nyl:)[ ni’l_—mn;qy” ,n#0.

Particularly, m =0, ") =", [a(n—m)|") = a’ (n—m)".
Definition 2.3[26] q-gamma function is defined by
)
rq(r):%, te R\{0,-1,-2,...}.
(1-9)
Then, T, (r+1)=] T, (t).
Definition 2.4[26] The g-derivatives for /4 is defined by

h(r)-hlgt)
D h\t)=—F+——=, 0.
(DK) (i—qy '~
(D,2)0) = lim(D, A ).
Definition 2.5[26] The high order g-derivatives for / is defined by
(D°h)¢)= h(r),

(Dr)r)= D, (D R)e), ke N.
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Definition 2.6[26] A is defined on the interval [O,b], g-integral for 0 to b is
defined by

(1,2)e)= [ s, s = o1 Zh(tq)q‘,ze[o,b].

Lemma 2.1[27] If a € [O,b], and his defined on the interval [O,b], g-integral for

a to b is defined by
[ sl = [T =[] W

Lemma 2.2[27] The operator I obtains
(7°h)e)=h ( (lkh)(f):zq(fg-‘h)(r), keN.
Lemma 2.3 27] ( tht = ; if function /4 is continue at =0,

1, D,hke)=h

Definition 2.7[26] Let v2 O and /1 be a real function defined on a certain interval
[0 T ] The Rlemann-LiouVille fractional g-integral of order Vv is defined by

( OhXt and
(I;hXt) = ﬁf; (= qs)(v_l)h(s)dqs . v>0, telo,T].
Definition 2.8[26] Let v > 0 . The Riemann-Liouville fractional g-derivative of order v
is defined by Riemann-Liouville (D;hXt ) = h(t ) and
(D:h)e)= (DL h)e), v>o0.
Where [ is the smallest integer greater than or equal to V.

Lemma 2.4[27] Let &, >0, f be a function defined on a certain interval [O,T ],
Then the following formulas hold:

1) (215 o)= (02 1 Ko).
( ( q qu’ -

Lemma 2.5[27] Let & > 0, n is positive integer. Then the following equality hold:

20y )0)= (0212705 (0;)o).

) Fq(a+i—n—1)

a-n+i
t

Lemma2.6[28] Let v>0, a € R, for t € [a,b], Then the following equality hold:

D (1 af =Dr(;(+:1+)l)(t_a)a-v.

Definition 2.9[29] Let p > 1, the p-Laplacian operator is defined by
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0, (x)=|x""

Obviously, ?, is the continuously increasing invertible operator, its inverse operator is

=1.

¢q* > q*
Lemma 2.7 Forany y € C [O,l], the problem
D=(g,(DPx)e))= (), 0<r<1,
x(O) 0, x(l) = aqux(f), Dfx(O) =0, Dfx(l) = bDfx(n),
(2)

has the unique solution

x(r)= Ll G(t, qz)¢q (Jz M(z, qr)y(r)dqrjdqz .

With
-1
_g.p-l_a-l1 _ 2 ﬁ + 1
B =b""n""#1,B,=al(B)f > #T ( |
L, (a)1-5) ’ -
Canl () St (5 G0 S n<qr<z<i
” B T (a)1-B) ;
(Z’qr)_ a-1 (a-1) p-1_a-1 (1) ( )
= (1-gr) bz (g —gr) 0<z<qr<n<l
R,(a)(lf(Bl))
Za—](liqr)afl
— ", 0<z<qgr<ln<qr,
r,(a)1-B)

Lt 82 ol
rq(ﬁ{rq[% N 2]
et g
Glige)= " (ﬁ{ ( j 32] . (@)
e N G
rq(/}{rq(%)—BzJ
rq(%}ﬁ’l(lfqz)[ﬂ”)
rq(ﬂ)[rq[%jfgz) ’
Proof By Lemma 2.5, one has
1;0; (¢, (D) x(1)) = 4, (D] x(1)) - s~
=1yt
()J(t ar)* ¥,

where 4, 4, € R . Combining (2) with D, x(O) 0, wehave 4, = 0. Then

. 0<gz<t<l,qz<¢é,

. 0<r<qgz<E<l,

0<t<gz<l,£<qz
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9, (Dqﬂx(t))z T za)jot(t - qr)(afl)y(r)dqr + At

%(Dfx(l)) l)j;a )y M+ 4,

I' (a
1

Hence

'7

¢ 77 qr - )dr+Al77‘Zl

Fq(a 0

combining with Df ( )= bDjf x(?]), one has

-1)

(1= qr)(“ ) 7 b” 1(77 qr) (
T, a)(l b 'n* 1)y I 1 b"~ 177"’ lfv
D)= [ -ar) o Lr e

0 qr>< !
L e

=—LM t,qr)y(r)dqr.

A =-

So
Dﬁ (r)= U M(t,qr)y (r)dqr) (%)

Applying Lemma 2.5 to (5), we have
1PDlx(t)=x(t)-Cp" ' = C

=-174, UO' M (Z,qr)y(r)dqrj ’
where C|,C, € R . Since x(O) =0, wehave C, =0. Therefore,
) =-1£9( [ MEarhha, oo ©)
Applying qu to both sides of (6), and by Lemma 2.6, we have
Dix(t)=-D]1/4,. ( jolM(z,qr)y(r)alqr)Jr C,D/t"!

/f+lj

=, ﬁ U M(z, qr)y(r)ah,rjalqﬂcl s

B+l -¥)
2

So
RV R
- _I %ﬁf (J‘o M(z,qr)y(r)dqr)dqz+ C»

] ,54.) 1 LB L.
- g(qﬂ—zl)qj (Lo, Ja,zec =5

L)

=1

61
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combining with x(1)= aD; x(£), we have

B+1
B I
al o ) T2 !

G IJ
2
Thus, we obtain the unique solution of problem (2):

I (Pt

(I M(z,qr)y (r)dqrjdqz

s p+1 N |
;(ﬂ;(ljz_ sz { [ (1 = ff[),f) ) 4, ( [ w, qr)y(r)dqrj 0z

L et

The proof of Lemma 2.7 is complete. o
Lemma 2.8 Let G and M pe defined by (3) and (4) , respectively. If

1
an(ﬂ) 2 <Fq['32+1) and bp_ln“_l <1, then:

a) G,M e C([0,1]x[0,1]);
b) Glt,qz)>0,M(r,qz)>0 forall 1,z €(0,1);
C

(
(
(

) there exist two positive functions v € C ((0,1), (0,+OO)), so that for all
(0,1) , one has
plgz)=max G(r,qz), v(gz)>max M(r,gz).
Proof (a) Obviously, G(l‘ , qZ) and M (t ,qZ) is a continuous function of above.
[0,1]x[0.1].
(b) To prove that G(t,qz)> 0 for allz,z € (0,1), put

): s (1 _qz)(ﬂ—l) _ (t _ qz)(ﬁ—l) )
rq (ﬂ)

g (t.qz
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- (5-1)
,w(l_qz)w“_w(l_qu

>0.

>0.
the case 0 < gz <t <1,z < ¢, then

) O N S Y R A o

Glt,q2)=

g g B =) -ar (Y -e)

r,(0) ' (%) 5]

p-1

R (2 7 | S — %)
n(%5")»)

>0.

The remaining three cases0<E<z<f<1 or 0ZLr<z<E<]  or
0<t<z<1,£<z can be handled in a similar way, so that we omit the obvious
modification. Thus, G(t ,qZ) >0forall £,z € (0,1).

Similarly, to prove that M (l‘ R qZ) >0, forall ,z € (0,1) .Put

e (1-g) (- gz )

ml(t7qz):
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>0.

s 1(1 qZ)(a—l)
(1, qz) = =az)"
’ T, (@)
>0.
The case 0 < gz <t <1,qz <7, then

Mltng)=" (1-g2)“ " =b""* (- gz)“ "~ (1= B, \r — gz)“"

L, (a)i-5)
_ t"'l(l _ qz)(a—]) _ (t _ qz)(ot—l) N pripe! [7711—[ (1 _ qz)(ot—l) . (77 _ qz)(a—l)]
rq(a) rq(aXI_B])
-l a-1
= m](t,qz)+ _tB ml(qu)

1
>0.
One can apply a similar argument in order to treat the remaining three cases
0<7<qz<t<]l or 0<5¢t<qz<n<1lor0<r<qz<1L,p<qz. Thus, that
M(t,qz)>0, forall £,z €(0,1).

( ) For a fixed gz, the functions given by (7) and (8), respectively, are increasing
in f for f < gz and decreasing in # for # 2> gz . Therefore

B-1(1_ . \B-1)
max{g, (. gz). &, (1. 42)} = £,(42.42) = %, gz € (0,1):
p-1(1_ el
mascfm (1. g2)omy (.2)} = m (gz.q2) = 0=V o).
0<r<1 F(a)

q
Put

By( A1) ;
uqz)= g (qz.q92)+ 2 /3+1 . qz<(0.1)

f"{ Bz)

(a b

Hgz)=m gz, gz) 20 ) . qze(01)

a+l j

a -B,

It is certain that 1,V € C ((0 1) (0, +oo))

Consider the four cases.
If0<gz<t<1,z<¢,then

B."(1 (1) _ (B /31
e Glge) | g 220V =Y =)

0<t<1 0<r<1 +1
noln(%)-2)
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(5-1)
B, (1 —qz )

<& (9z.92)+ Fq(ﬂ)(rq[ﬂﬂj—BzJ

2

= plgz).
If0<&<z<t<1,then

Fq[ﬂ + 1}51 (1=gz)" —(Fq[ﬁ + 1) B sz(t —gz)#
2 2
max G(t qz) max

0<r<1 0=¢<1 Fq (ﬂ{rq [ﬁ;l) 3 32 J

) (/321]3 L)
g/(qz.92) B1—gz)" "
T
= plgz).

If0<t<z<E&<I, then

£-1

(ﬂ“j 0 qz><ﬂl—ar< V- -ae) 2]
max G(t,qz) = max

0<t<1 0<t<l + 1

l'g_l(l—qz)(/j_l) thﬁ_'(l qz)(/}_l) al’ (ﬁ) _'(f qz)[?]

TR T m[ (2:1)- ]
o Aosas Al z)’“)
= g(g2.9 Mpq(g%pi[gz”j@}
= plgz).

If0<t<z<1,£<z,then

(ﬂ + 1) 1= gz)
max G(t, gz) = max 2
0<i<l 0<i<l ﬁ{ ﬁ + 1 B2j
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. e (1_qz)(ﬂ—1) . B2t/’“ (l_qz)(ﬂ—l)
B T A
(5-1)
= g,(qz.92)+ Byll-az)”
ﬂ){ ﬂ+1 sz
= ulgz).

Thus,
max G(l, qz)S ,u(qz), qz € (0,1).

0<r<l1
Similarly, consider the four cases of the function v.

If0<qgz<t<l,gz<m,then

0<r<1

prlgat [na_l (1=gz) " = (- qz)(a—l)]J
L,(a)1-8)
B, (1 - qz)(ail)

< A Sl Sl A
= ml(qz,qz)+ Fq(a)(l—B])

—(gz).

max M(t, qz) = rona)l([ml (t, qz)+
<t<

If0<n<gz<t<l,then

max M (t qz) max

0<r<1 0<t<1

F“U—wV”—U—&ﬁ—wW”J
r, ()i 5)

11— gz) )

< max| m,(t,qz)+ B,
osi<t| ! I (x)1-B)
B,(1-gz)"

(qZ qZ) q(a)(l B)

=vgz).
If0<t<gz<n<l,then

max M(t,qz)= max(’ 1= gz) V= b (g — gz ) J

0<t<1 0<t<1 Fq (0{)(1 — Bl )
_ max(tal (1 _ qZ)(afl) . bp—ltafl [’70571 (1 _ qz)(afl) _ (?7 _ qz)(al)]J
0<r<l1 Fq (a) Fq (0[)(1 - Bl)

B,(1-gqz)*”"
<m (qz, qz)+ =2
1 r,(a)1-B)

:V(qz).
If0<t<gz<1,n<qz,then



C. Jiang and C. Hou / Riemann-Liouville Fractional q-Difference Equation 67

a—1 _ (cx—l)
max M(t,qz) = max ! (1 qz)

0<i<1 0<r<1 m
o 17 0=g2) Y B (1 gz)
0<i<l Fq (a) Fq (05 )(1 - B, )

B, (1 - qz)(ail)
I (a)1-B)
=v(gz).

<m (qz, qz)+

Thus,
max M(t,qz) < v(qz), gz <(0,1).

0<¢<1
The proof is complete.
Lemma 2.9 Let £ =C [0,1] be a continuous function space equipped with standard

sup-norm ”x” = maX|x(tX and denote by P = {x € E|x(t) >0,0<¢< 1} the

0<t<l1

corresponding cone. Let T : P — E be given by

7x(r)= [ Glt.g2)p, [ [ M. qr)h(r,x(r))dqr)dqz ,

where /1 € C([O,l]x[0,+oo), [O,+oo)) and G(t,qz) and M(Z, qr) are defined by

(3) and (4), respectively. Then I takes P into itself, and as such is completely
continuous.

Proof Since G, M and h are nonnegative and continuous, one has T’ (P)CP

and T is continuous. In order to prove the complete continuity of 7, it is necessary to
use a standard argument based on the Arzela-Ascoli theorem and the Lebesgue rule of
convergence theorem.

3. Main result

We can now formulate our main results. To this end, denote

J= J:)l ,u(qz)yﬁq* (.Ev(qz)dqudqz ,

where L,V defined in Lemma 2.8.

Theorem 3.1 Let h€ C ([O,l]x [O,+oo), [O,+OO)) , suppose there is a positive number
k satisfying the following:
(Sl) if 0<¢r<1,0<s, <s, <k, establishment h(t,sl)é h(t,sz);

(S,) maxh(r,k)<¢,(k):
(S,) 0<z<1 forall A(t,0)=0.
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Then the problem (1) has two positive solutions x" and y* makes

(i) O<HX*HSk’},i_,12TnxO =X, where xo(t)Zk for 0<7<1;

(if) 0<Hy*HSk,’11i_I)l;T"y0 =y, where y,(t)=0 for 0<7<1.

Proof Let €2 = {x € me” < k}. Suppose, x € . Obviously, 0 < x(l‘) < ”x” <k.
From the assumptions (S 1) and (Sz) :
0 < h(t, x(¢))< hlt, k) < max h(t,k)< ¢, (k).
<t<

We claim that 7’ (Q) c Q. Actually, for Vx € Q, we have Tx € P, and by Lemma
2.8, we know

) I Gle.qz)g, U M(s,qr ), x(r))d rjd z
<I qz);/ﬁ U 611”)¢ (kJ)d r)dqz
_kJJ. qz)¢ U qr)d r)d z

=k.
Thus, Tx € Q. The next proofs the existence of X .Take the function X, =k on
0<¢<1,then ”xO” =k and x (t)z Txo(t) with x, € (2 .Define
x,.,=Tx, =T""x,,n=0,12,....
Then, for all n=0,1,2,...,one hasx, € Q.

||T x|| max

From the assumptions (S 2) and Lemma 2.8, we can get that for V# € [0,1] :

5(0)=Tx,(1)= [ Glt.g2), ( [ M(z.gri(r.x, (r))dqr)dqz
< gz ([ larlg, (1), 2
<t/ [ ulg=). U (gr)d r)d
=k =x,(1).
x,(£)=Tx, ()< Tx,(r) = x,(), 0<£<1.

By mathematical induction, we know

x,,(t)<x,(¢), 0<t<1,n=0,1,2,....

Hence,
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From Lemma 2.9, we know that the operator is a completely continuous operator, so

T ‘ Q ’ is a compact set.

Therefore, {xn }:_1 exists the sub-sequence converges {xn }[_)CO to x €Q. Because
= 1 71=
{xn_ }wo is monotonic, and X, —> x*, again from the continuity of the operator 7, it
i i

* . % %
can be known that 7x, = x,,, —> x , thatis 7x =x .

n+l

It can be proved T y* = y* by the same method. Take the function
¥y =0, identically on 0<7<1, Clearly,then ||yo||=O,and ¥, € Q Also,

yl(t): Tyo(f).Deﬁne
Vo =Ty, =T""y,, n=0,1,2,...

Then, forall n=0,1,2,..., one has y, € ). By the same computation as above,

From the assumptions (Sz) and Lemma 2.8, we can see that for lemma 2.8, for

veelol],
Y, (t) =Ty, (t) = J;l G(t, qz)ﬁq* (Ll M(z, qr)h(r, Yo (r))dqrjdqz
= Jz G(t, qz)¢q* UOI M(z, qr)h(r,O)dqrjdqz

:0:)’0([)-

y,(£) =Ty, (1)< Ty, ()= ,(), 0<r<1.

Hence,

By mathematical induction, there is

yu)<y (), 0<t<1, n=0,12,....

0

Therefore, {yn} exists the sub-sequence converges {ynv }wo to y* € (2. Because
i )=

n=1

{yn‘ }OOO is monotonic, and y, —> y* , again from the continuity of the operator T, it
1 1=

can be known that Ty, =y, ., —>  , thatis Ty =y . It remains to be seen is that,

the problem (3.1) has two positive solutions x and )" .So HX*H >0 and Hy*H >0.

The proof'is complete.
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4. Example

Consider the following problem:

1 L7 3 3 1 201
x(0)=0, x(l):ZDfx Ej’ Dfx(O)—O, Dfx(l):EDf (5)
©9)
1 3 x> 3 1 1
= — = — h = — 4 — = = — = — = —
Where ¢ =7 P=7 ) 15 12 P=g 7= <=y
! a I b 1Th
=—,a=—, b=—_.Then
=5 2

Let kK =8, we have
(1) For VO<¢<1,onehas 0<s, <5, <8, h(t,sl)S h(l,sz);

(2) max h(t,k)=h(1,8)~ 4.9334 < ¢, (kJ)~5.8901;
<t<
3) h(t,0)=0,for 0<t<1.

The problem (9) has two positive solutions x" and y* :

(i) 0<HX*H <8 and }Zi_{ngxO = x" ,where x,(t)=8;

(ii) 0<Hy*HS9 and }ZLIETn% =", where yo(t):O.

References

[1] Annaby M H and Mansour Z S 2012 Q-difference equations Lecture Notes in Mathematics
[2] Fan X, Zhang Q and Zhao D 2005 Eigenvalues of p(x)-Laplacian dirichlet problem Journal of
Mathematical Analysis and Applications 302(2) 306-17



C. Jiang and C. Hou / Riemann-Liouville Fractional q-Difference Equation 71

[3] Wang J and Xiang H 2014 Upper and lower solutions method for a class of singular fractional boundary
value problems with p-laplacian operator Abstract & Applied Analysis 2010 1085-3375

[4] Bai and Chuan Z 2018 Existence and uniqueness of solutions for fractional boundary value problems with
p-laplacian operator Advances in Difference Equations 2018(1) 4-10

[5] Zhou B 2019 Existence of positive solutions of boundary value problems for high-order nonlinear
conformable differential equations with p-Laplacian operator Adv. Differ. Equ. 351 34-44

[6] Lu H, Han Z, Chao Z and Yan Z 2014 Positive Solutions for Boundary Value Problem of Nonlinear
Fractional Differential Equation with p-Laplacian Operator Journal of Differential Equations 2014

[71Rao S N and Alesemi M 2020 Existence of positive solutions for systems of nonlinear fractional differential
equation with p-laplacian Asian-European Journal of Mathematics 13(05) 5-719

[8] Guo L and Liu L 2019 Unique iterative positive solutions for a singular p-laplacian fractional differential
equation system with infinite-point boundary conditions. Boundary Value Problems 1

[9]1 Li 'Y 2019 Multiple positive solutions for nonlinear mixed fractional differential equation with p-laplacian
operator Advances in Difference Equations 1

[10] Khan H, Jarad F, Abdeljawad T and Khan A. A 2019 Singular abc-fractional differential equation with
p-laplacian operator Chaos, Solitons & Fractals 129

[11] Jong K S, Choi H C and Ri Y H 2019 Existence of positive solutions of a class of multi-point boundary
value problems for p-laplacian fractional differential equations with singular source terms
Communications in Nonlinear Science and Numerical Simulation 72(JUN.) 272-81

[12] Zhang L, Wang F and RuY 2019 Existence of nontrivial solutions for fractional differential equations with
p-laplacian Journal of Function Spaces 2019 1-12

[13]Hka B, Fj C, TaD and Ak D 2019 A singular abc-fractional differential equation with p -laplacian operator.
Chaos Solitons & Fractals 129 56-61

[14] Haddouchi F 2019 Positive solutions of p-laplacian fractional differential equations with fractional
derivative boundary condition 2019

[15] Chen T and Liu W Z 2012 A boundary value problem for fractional differential equation with p-Laplacian
operator at resonance Nonlinear Analysis Theory Methods and Applications 2012

[16] Bartsch T and Liu Z 2014 On a superlinear elliptic p-laplacian equation Journal of Differential Equations
198(1) 149-75

[17] Lu S and Gui Z 2007 On the existence of periodic solutions to p-laplacian rayleigh differential equation
with a delay Journal of Mathematical Analysis & Applications 325(1) 685-702

[18] Klaus P 1998 Existence and multiplicity of solutions to a p-laplacian equation with nonlinear boundary
condition Electronic Journal of Differential Equations 10 1-13

[19] Mao J, Zhao Z and Wang C 2019 The unique iterative positive solution of fractional boundary value
problem with g-difference Applied Mathematics Letters 100 106-200

[20] El-Shahed M and Al-Askar F M 2011 Positive Solutions for Boundary Value Problem of Nonlinear
Fractional g-Difference Equation Isrn Mathematical Analysis 11 5545-50

[21] Tsa C, Gs A and Bq B 2020 On the fuzzy difference equation xn = F( xnl, xnk ) Fuzzy Sets and Systems
387 81-8

[22] Gefter S L and Piven A L 2020 Holomorphic Solutions to Linear g-Difference Equations in a Banach
Space Journal of Mathematical Sciences D 251(5) 602-614

[23] Abbas S, Benchohra M, LaleDj N, et al 2019 Existence and Ulam stability for implicit fractional
g-difference equations. Advances in Difference Equations 1 1-12

[24] Tua H and Gu Y 2020 On the meromorphic solutions of generalized g-difference equations Science Asia
46(5) 626

[25] Kang S, Chen H, Li L et al 2019 Existence of three positive solutions for a class of Riemann-Liouville
fractional g-difference equation Journal of Applied Analysis & Computation 9(2) 590-600

[26] Annaby M H and Mansour Z S 2012 Q-fractional calculus and equations Springer Berlin Heidelberg 2012

[27] Rui A 2010 Nontrivial solutions for fractional g-difference boundary value problems Electronic Journal
of Qualitative Theory of Differential Equations 70 1-10

[28] Zhao Y, Chen H and Zhang Q 2013 Existence and multiplicity of positive solutions for nonhomogeneous
boundary value problems with fractional g-derivatives Boundary Value Problems 1 103

[29] Lian H, Wong P and Shu Y 2015 Solvability of Three-Point Boundary Value Problems at Resonance with
a p-Laplacian on Finite and Infinite Intervals Abstract & Applied Analysis 6 1395-416



