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1. Introduction 

The calculus invented by Newton and Leibnitz is the watershed between modern 

mathematics and ancient mathematics. Fractional calculus is a related theory about 

differentiation and integration of any order. It is the extension of integer-order calculus. 

From q-differential calculus and quantum after the calculus was proposed by Jackson, 

it attracted the attention of many scholars to the q-difference equation. Quantum 

calculus is called infinite calculus. It replaces the classical derivative with a difference 

operator and can be used to calculate non-differentiable functions. In addition to the 

application of q-difference to orthogonal polynomials, combinatorics, hypergeometric 

functions and other mathematical fields, q-differences are increasingly used in natural 

sciences and engineering [1]. 

At present, fractional differential equations with p-Laplacian operators have 

received widespread attention due to their outstanding applications in viscoelastic 

mechanics, non-Newtonian mechanics, electrochemistry, fluid mechanics, and 

materials science. The related theoretical research on the boundary value problem of 

q-differential equation with p-Laplacian operator is not only the need of the 

development of differential equation theory, but also the need of social production and 
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life. It is hoped that its related theories can play a certain role in practical applications 

[2, 3]. 

In recent years, some preliminary results have been achieved: 

In 2018, Bai, C. [4] studied the following problems with p-Laplacian operators: 
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with 10   ,   22 ,and ,  are real number,


0
D and



0
D

C
 are the 

standard Riemann-Liouville fractional derivative and Caputo fractional derivative of 

order ,  respectively, 1p ,   RRbaf ， ,C , which used to prove the 

existence and uniqueness of nontrivial solution with fractional boundary value using 

the Banach contraction mapping theorem and Guo-Krasnosel'skii fixed point theorem  

In 2019, Zhou, B. [5] studied the following high-order fitting fractional boundary 

value problems with p-Laplacian operators: 
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with nn  1 , 
0


T is a newly defined fractional derivative called "integrated 

fractional derivative". Using the Guo-Krasnosel’skii fixed point theorem, sufficient 

conditions are established to ensure the existence of a positive solution to the above 

boundary value problem. 

For some basic theories and applications of fractional boundary value problems 

with p-Laplacian operators, please refer to the literature [6-18]. 

In 2020, Zhou, J. et al. [19] studied the boundary value problem of fractional 

q-difference equations: 
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where 10  q , 32  , the function  vutf ,, may be singular at 0v  and 

1,0t around. The iterative algorithm is used to obtain the existence and uniqueness 

of the positive solution of the boundary value problem. 

For some basic theories and applications of boundary value problems of fractional 

q-difference equations, please refer to the literature [20-25]. 

Inspired by the above literature, we discuss the following equation: 
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2. Preliminaries 

In this section, let  1,0q , some related definitions and lemmas are given. 
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Definition 2.3[26] q-gamma function is defined by 
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Definition 2.4[26] The q-derivatives for h  is defined by 
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Definition 2.5[26] The high order q-derivatives for h  is defined by 
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Definition 2.6[26] h is defined on the interval  b,0 , q-integral for 0  to b  is 

defined by 
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Lemma 2.1[27]  If  ba ,0 , and h is defined on the interval  b,0 , q-integral for 

a  to b  is defined by 
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Definition 2.7[26] Let 0v  and h  be a real function defined on a certain interval 

 T,0 . The Riemann-Liouville fractional q-integral of order v  is defined by 
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Definition 2.8[26] Let 0v . The Riemann-Liouville fractional q-derivative of order v  

is defined by Riemann-Liouville     ththD
q



0

 
and 

     thIDthD
vl

q

l

q

v

q



 , 0v . 

Where l  is the smallest integer greater than or equal to v . 

Lemma 2.4[27] Let 0,  , f
 
be a function defined on a certain interval  T,0 , 

Then the following formulas hold: 
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Lemma 2.5[27] Let 0 , n  is positive integer. Then the following equality hold: 
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Lemma 2.6[28] Let 0 , R , for  bat , , Then the following equality hold: 
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Definition 2.9[29] Let 1p , the p-Laplacian operator is defined by 
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Lemma 2.7 For any  1,0Cy , the problem 
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Proof  By Lemma 2.5, one has 
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The proof of Lemma 2.7 is complete.                                      □ 

Lemma 2.8 Let G  and M  be defined  by (3) and (4) , respectively. If 
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1
S

 
and  

2
S
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        kJkthkthtxth
p

t




,max,,0
10

. 

We claim that   T . Actually, for x , we have PTx , and by Lemma 

2.8, we know 
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1
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1
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1

0

1

0
*
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Thus, Tx . The next proofs the existence of 
*

x .Take the function kx 
0  

on 

10  t , then kx 
0 , 

and    tTxtx
01


 
with 

0
x .Define 

0

1

1
xTTxx

n

nn




 , …,2,1,0n .

 

Then, for all …,2,1,0n ,one has 
n
x . 

From the assumptions  
2

S
 
and Lemma 2.8, we can get that for  1,0t : 

           zdrdrxrhqrzMqztGtTxtx
qqq






 

1

0
0

1

0
01

,,,
*

  

      zdrdkJqrqz
qqpq






 

1

0

1

0
*

  

    zdrdqrqzkJ
qqq






 

1

0

1

0
*

  

 txk
0

 . 

Hence, 

       txtTxtTxtx
1012

 , 10  t . 

By mathematical induction, we know 

   txtx
nn


1

, 10  t , …,2,1,0n . 
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From Lemma 2.9, we know that the operator is a completely continuous operator, so 

 T
 
is a compact set. 

Therefore,  
1nn

x  exists the sub-sequence converges  
0i

n
i

x  to 
*

x . Because  

 
0i

n
i

x

 
is monotonic, and 

*

xx
n
 , again from the continuity of the operator T , it 

can be known that 
*

1
xxTx

nn



, that is 

**

xTx  . 

It can be proved 
** yTy 
 

by the same method. Take the function 

0
0
y ，identically on 10  t , Clearly,then 0

0
y ,and 

0
y .Also, 

   tTyty
01

 .Define 

0

1

1
yTTyy

n

nn




 , …,2,1,0n  

Then, for all …,2,1,0n , one has 
n
y . By the same computation as above, 

From the assumptions  
2

S
 
and Lemma 2.8, we can see that for lemma 2.8, for 

 1,0t , 

           zdrdryrhqrzMqztGtTyty
qqq
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0
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0

1

0
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*

  

 ty
0

0  . 

Hence, 

       tytTytTyty
1012

 , 10  t . 

By mathematical induction, there is 

   tyty
nn


1

, 10  t , …,2,1,0n . 

Therefore,  
1nn

y
 
exists the sub-sequence converges  

0i
n
i

y  to *y . Because  

 
0i

n
i

y
 
is monotonic, and 

*

yy
n
 , again from the continuity of the operator T , it 

can be known that 
*

1
yyTy

nn



, that is 

** yTy  . It remains to be seen is that, 

the problem (3.1) has two positive solutions  
*

x  and 
*

y .So 0
*

x
 
and 0

*

y . 

The proof is complete.     
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4. Example 

Consider the following problem: 
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2

3
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,
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Let 8k , we have 

(1) For 10  t , one has 80
21
 ss ,    

21
,, sthsth  ; 

(2)       8901.59334.48,1,max
10




kJhkth
p

t

 ; 

(3)   00, th , for 10  t . 

The problem (9) has two positive solutions  
*

x  and 
*

y :  

 i  80
*

 x

 
and 

*

0
lim xxT

n

n





,where   8
0

tx ; 

 ii  90
*

 y
 
and 

*

0
lim yyT

n

n





, where   0
0

ty . 
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