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Abstract. To compensate for the lack of abstraction in the field of origami, in this 
paper, we propose a categorical description that can be introduced to map folding. 
Specifically, we use a particular expression to abstract the folding process of a map 
with logical matrices. When the folding operations are restricted to two certain kinds, 
the simple folds and the simple unfolds, we can define categories of partly folded 
states of the map as poset categories. The property of posets induces many general 
categorical concepts, such as (co)product, opposite category, direct system, and so 
on. We then introduce how these general concepts are specified in the proposed 
categories. These conceptions and specifications brought us the hope to solve and 
study the map folding with contemporary mathematical methods, such as the 
(co)homology. Furthermore, our categorical description can potentially be applied 
to a more generalized version of the map folding, the flat-folding. 
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1.  Introduction 

The category theory has been developed as a strong tool in many conventional studies 

and research fields during the previous several decades, and it has contributed to address 

many specified problems. The categorical description of singular (co)homology [1], the 

rephrase of sheaves and schemes in modern algebraic geometry [2], and the unification 

of usual manifolds and states studied in quantum field theory and quantum computing 

[3] are all notable examples. In the subject of geometric folding, however, such a 

powerful tool has never been presented. The intricacy may be equated to folding a paper 

with faces of various forms and sizes, each of which is extremely dependent on the 

metric, which is often not chasable by a categorical analysis. 

Fortunately, in map folding, where the folding of a regular grid pattern of size � × � 

with a Mountain-Valley assignment (an MV assignment, in which every edge is assigned 
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as either a “Mountain” or a “Valley” to specify the direction to fold) is desired, the 

concept of metric is weakened while the topology is strengthened. This allows us to use 

category theory instead of standard algorithmic methods to detect the properties of map 

folding in a highly abstracted fashion. In the next section, we will go through some 

existing results of map folding. 

To simplify the map folding problem, Arkin et al. presented the simple folding model 

[4]. They explored three types of simple-folding models: one-layer simple folding, all-

layers simple folding, and some-layers simple folding. Among these, the last one is the 

most generalized one, and it is utilized in this research as well. 

We also introduce simple unfolding in order to construct the opposite category [5]. 

Every step of a (some-layer) simple folding (simple fold) folds some top or bottom layers 

along a single line to achieve a state that is also flat, as shown in figure 1, whereas every 

step in a simple unfolding (simple unfold) is an inverse operation of a simple fold. 

 

 

Figure 1. An example of simple fold and unfold. 

On the other hand, logical matrices, which are employed as a representation in our 

categorical analysis of map folding, are also essential in current quantum computing 

research [3]. These matrices are seen as a natural representation of the category of 

relations, Rel. Some sophisticated categories, such as the category of Hilbert spaces Hilb 

and the category of ( � � 1 )-dimensional compact oriented manifolds nCob, are 

introduced as nothing more than refined versions of Rel in [3].  

The 0  and 1  in the logical matrices, on the other hand, can be thought of as 

degenerated cases of general probabilities with a range of 0 to 1. From this perspective, 

the overlap of layers in a flat-folding, i.e., any flatly folded state of a sheet of paper with 

an arbitrary pattern, might theoretically be represented by numbers ranging from 0 to 1. 

0 indicates that they “do not overlap at all”, while 1 indicates that they “completely 

overlap”. The overlap relation of any two arbitrary layers must correspond to these two 

in our definition of simple-folding a map, thus either 0 or 1. It is possible to generalize 

our map folding description to other flat-foldings. 

We use a logical matrix representation to offer a categorical description of simple-

folding a map in this work. We define the category of partially flatly folded states (middle 

states) of the map during simple folding, PS and built a one-to-one relationship between 

PS and the logical matrix representation category LM. In addition, we define notations 

such as opposite category, (co)product, and direct system in PS and LM. 

2.  Background and Preliminaries 

In this section, we will introduce some related works of map folding, flat-folding, and 

simple-folding. 

Map folding is a specific type of flat-folding. As mentioned in the last section, faces 

do not have to be exactly the same shape in most flat-foldings. It was shown that deciding 

whether such generalized patterns have flatly folded states is NP-hard [6]. This problem 
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is still unsolved for map folding, although some results for low-dimensional map folding 

are given in [4,7]. 

Despite this intractability of general flat-folding, the problem degenerates into a 

linear-time solvable scenario when constrained to a small enough area around a single 

vertex [8]. In other words, if the pattern has only one vertex, whether it can be folded to 

a plane is linear-time decidable. The purpose of emphasizing the different results 

involving local and global flat-foldability is because they might be related to “local-vs-

global” topics in cohomology theories. So far, studies on flat-foldings have only focused 

on local and global situations separately rather than the connection between them. 

However, the connection seems to be a much more intrinsic and complex subject from 

the categorical viewpoint. 

As afore-mentioned, the simple folding and the simple unfolding were firstly 

introduced in [4] and [5], respectively. In [4], they used two kinds of special simple folds, 

crimps and end-folds, as the basic operations in a map of size 1 � �. An end-fold in a 1D 

map is a fold at either the first or last crease point, as shown in figure 2. The distance 

between the last crease point and the corresponding end of the map is not larger than the 

distance between the adjacent crease points. A crimp is a fold made between two adjacent 

crease points marked with the letters �� or ��. The length of the interval between the 

two crease points is locally minimum. 

These two operations can be easily generalized to 2D maps of size 	 � � if we 

generalize the folded points in figure 2 to a line segment going through the rectangular 

paper along grid lines. According to one of our recent studies, any middle state (refers to 

a partly flatly folded state) of a map accessible by a simple folding can be accessed by a 

sequence of crimps and end-folds while respecting the rule that once two squares of the 

map touch each other, they would not be apart again [9]. 

 

 

Figure 2. Two operations in the simple folding: crimp and end-fold. The red points indicate mountains 

and the blue point indicates a valley.

3.  Logical Matrix Representation 

Matrix of a map The 	 � � squares in a map can be indexed from 1 to 	�. We then 

build a 	� � 	� matrix � to represent the map. An element at the 
-th column and the 

�-th row is denoted 	��. It represents the relation between square 
 and square �. 

Adjacent relation In any middle state of the map, a pair of squares either touch each 

other or not. When two squares touch each other, we say that they are in an adjacent 

relation. For a pair of adjacent squares 
 and �, there are two possible “up-down relation”, 

i.e., 
 is either below (
 � �) or above � (� � 
). For the consistency, we assign 1 to 	�� 

if 
 is supposed to be below � in the final state, and assign 1 to 	�� if 
 is supposed to be 

over � in the final state. Even though the “up-down relation” in a middle state could be 

different from the one in the final state, it can be easily computed following both the 

parity of the Manhattan distance between square 
 and the first square and which side 
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(the front side or the backside) 
 faces up in the middle state. Other elements of the matrix 

would retain 0. As illustrated in figure 3. For this map of size 2 � 4, its corresponding 

matrix is an 8 � 8 matrix. The initial matrix is a zero-matrix, corresponding to (1). Then, 

the middle state (2) corresponds to the matrix below it, where 	�� and 	�� are assigned 

1. When folded to the middle state in (3), 	�	, 	
�, and 	�� are assigned 1. In the same 

manner, states in (4) and (5) are matched with the matrices below them, respectively. 

Figure 3. A simple folding of a map of size 2 � 4 and the adjacent relations assigned at every step of the 

folding.

We must mention that, although we only recorded the adjacent relations in the 

matrix, the entire “up-down relation”, also involving the non-adjacent ones, can be 

computed as the transitive closure of the matrix. As an example, we give the computation 

of the transitive closure �� for the matrix of the final state �� (figure 3(5)) in formula 

(1). More introductions of the transitive closure can be found in [10]. 

 

�� � � ��
� �

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡0 1 1
0 0 0
0 1 0

1 1 1
0 0 0
1 0 1

1 1
0 0
1 1

0 1 0
0 1 1
0 1 0

    
0 0 1
1 0 1
0 0 0

    
1 1
1 1
0 0

0 1 0
0 1 0

0 0 1
0 0 1

0 0
1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

�

��	

 (1) 

In a transitive closure � of any middle state �, the element ��� means that square 
 

is supposed to be below square � in the final state, but not necessarily adjacent. Because 

of the uniqueness of adjacency relations in a middle state, a logical matrix representation 

for each middle state is unique. A logical matrix, on the other hand, can only represent 

one intermediate state at a time. 

4.  Categorical Analysis of the Map Folding 

In this section, first, we will define the two categories we will be looking at in this study. 

The first is the category of simple-folded middle states of a map of size 	 � �, while the 

second is the category of their logical matrix representations. Following that, we will 

define some common category concepts in these categories. 
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4.1.  Two categories 

The first category is PS, the category of middle states of a map by simple folds. All the 

conceivable middle states and final states of a map � are objects in this category, and all 

the possible foldings (unfoldings excluded) between these states are morphisms. The 

identity morphism is defined as an empty folding that does not have any practical folding 

operation. 

The second category, the category of the logical matrix representations, is denoted 

LM. The natural addition operation, inherited from the semiring Ω = ({0, 1}, +,⋅), is 

utilized to construct morphisms, and all the logical matrices that are allocated in terms 

of the adjacent relations in each middle state are taken as objects. The identity morphism 

in this category is addition by the 0 matrix, which is a reassignment of the matrix 

elements with no significant changes. The number 0 denotes the identity morphism. 

Now, we can build a one-to-one correspondence, or we say, a one-to-one functor 

between PS and LM. 

According to our fundamental setting of the folding operations, every time a crimp 

or an end-fold is folded, it connects two middle states (including the final states). Let's 

write �,� ∈ ��(	
) for two arbitrary middle states, and � ∈ ��
(	
) for the crimp or 

the end-fold. As a result of �, certain squares will become adjacent and, as previously 

mentioned, will never be separated again. These adjacent relations correspond to a few 

more 1s in the logical matrix representation of � than in the logical matrix representation 

of �. As a consequence, these additional 1s may be viewed as the outcome of the ���, a 

matrix addition. After that, we obtained the following one-to-one functor: 

 

�: �� → �� 

� ↦ ���	 

 ↦  ��
	 

�: Hom��
�A, B	 ↦ Hom������	,��
	� 


 ↦ ��
	 = ��� 

(2) 

 
The one-to-one property of functor � in Formula (2) comes after the discussion in 

the last section. A one-to-one mapping with a middle state characterizes a logical matrix 

representation. 
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Figure 4. Product and coproduct of two middle states 
 and �. 

4.2.  Specifications 

Now, we can discuss the categorical conceptions in these two categories. 

(1) Initial object and terminal object: Both categories have only initial objects but no 

terminal objects. The initial objects are the initial unfolded state of the map � and 

the zero matrices, respectively. They have no terminal object because � can have 

multiple final folded states. 

(2) Opposite category: Turn over the arrows in these two categories, and we get the 

opposite categories. The opposite category of PS, denoted ���
, takes the middle 

states of the map during a simple folding as its objects, and takes the inverse 

operation, simple unfolds, as its morphisms. Note that even though we can define 

the opposite category of LM by using “subtraction-like” morphisms, the operation 

cannot be naturally derived from the operations over the semiring �. This fact 

indicates the particularity of simple folds. 

(3) Direct system: Each simple folding derives a direct system in PS. The general 

definition of a direct system is presented as: Let ��, �� be a directed index set and 

let ��: 
 ∈ � be a family of indexed objects. If a homomorphism ���: �� → �� for all 


 � � satisfies that ��� is the identity morphism and ���  ��� ⋅ ��� for any triple 
 �

� � ", then ��� , ���� comprises a direct system. Take the middle states during a 

certain simple folding as ��, take the simple folds which fold an earlier middle state 

�� to a latter middle state �� as ���, and take the empty folding identity morphism 

as ���, we can obtain a direct system in PS. It also develops a direct system in LM 

via the functor #. In LM, the logical matrix representations of the middle states 
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during a certain simple folding are taken as �� while the difference between the 

logical matrix representation �� and �� is taken as ���. The zero matrix is taken as 

���. 

(4) Product and coproduct: In PS, any two objects that represent two middle states 

which can be folded to a common state has a coproduct. The coproduct represents 

their nearest common middle state they can be simple-folded to. On the opposite, 

their product represents their nearest common middle state they can be simple-

unfolded to. Because every two middle states can finally be simple-unfolded to the 

initial state of the map, products must exist. The illustration in figure 4 shows an 

example, where the product of two middle states � and � is the initial state of the 

map and the coproduct of them is their nearest further folded state. Moreover, the 

products and coproducts are alternated in its opposite category 	
��. Using the 

functor �, we can obtain the products and coproducts in LM. 

5.  Conclusion and Future Work 

We addressed how to obtain the category of the middle states while simple-folding a map 

using the logical matrix representation as an intermediate in this work. We studied two 

categories and confirmed the most prevalent conceptions in the category theory. 

Moreover, we proposed a highly abstracted model for the simple-folding and pointed out 

its potential to be applied to general flat-foldings. 

Our future work will focus on how to extend the categorical analysis to flat or even 

3D foldings, as well as how to apply our categorical description to solve specific 

problems. 
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