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Abstract. The controlling of exhaust gas from gasoline is crucial for atmospheric 
environment protection. Research Octane Number (RON) loss and restricted 
sulphur (S) content matter the quality of gasoline. To obtain gasoline with high 
quality, the paper proposes a novel data-driven optimization model integrating deep 
neural network (DNN) and genetic algorithm (GA) to model for Fluid Catalytic 
Cracking (FCC) process then optimize. To begin with, the DNN is used to fit the 
relations between 13 related input variables and output variables in FCC. 
Subsequently, the FCC process is modelled and GA is proposed to solve the 
optimization model. Ultimately, 305 samples from real datasets have been analysed 
to testify feasibility and effectiveness of the method. This paper provides a guideline 
for the production process of FCC gasoline. 
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1. Introduction 

Gasoline is the main fuel for cars, exhaust gas produced by Gasoline combustion has a 
serious influence on the atmospheric environment. Therefore, countries around the world 
have formulated increasingly strict quality standards for gasoline, in which the key point 
of cleaning gasoline is to reduce the content of S and olefin in gasoline, while 
maintaining its RON as far as possible. The United States, Britain, Japan and other 
countries mainly start from the “formulation” to achieve the standard, which is to be 
blended with gasoline produced through a variety of processes, while the catalytic 
cracking process is mainly used in China [1]. Because crude oil in China is mainly 
derived from sour and high-sour crude oil in the Middle East, and it is difficult to directly 
utilize the medium oil in crude oil. To solve this problem, China has vigorously 
developed the lightweight technology of heavy oil with FCC as the core to convert heavy 
oil into gasoline, diesel oil and low carbon olefin. Therefore, more than 95% of the S and 
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olefins in the finished gasoline come from FCC gasoline. Thus, FCC gasoline must be 
refined to make the finished gasoline meet the quality requirements of gasoline.  

Among the different standards, the most important one is RON, and as the 
commercial brand of gasoline, it is the most important index to reflect the combustion 
performance of gasoline. In the process of Desulfurization and olefins reduction of FCC 
gasoline [2, 3], the RON of gasoline is generally reduced by the existing technology. 
Each reduction in octane rating by one unit is equivalent to a loss of about $150 per ton. 
If the catalytic cracking process can be modeled, the suitable production variables can 
be found through simulation experiments so that the RON loss of the finished product 
gasoline can be decreased on the premise that the quality of the finished product gasoline 
can meet the environmental protection requirements. Namely, it will reduce the loss of 
the production cost of gasoline. 

Chemical process modeling is generally realized through data-based modeling or 
mechanism modeling.  Mechanism modeling is an accurate mathematical model based 
on an object, the internal mechanism of a production process, or the transfer mechanism 
of a material flow [4-8]. In the previous work, Czarnecki et al. [5] presented a model 
explaining the mechanism of water-in-oil (W/O) emulsion stabilization in petroleum 
systems. Cao et al. [6, 7] investigated the effect of H2S in the hydrodesulfurization of 
FCC gasoline. You et al. [8] predicted the change of FCC based on the dynamic model. 
Mechanism modeling can infer the model through the existing mathematical formulas, 
accurately describe the real situation and realize the global optimization, however, due 
to the complexity of FCC process and the diversity of equipment, considering their 
control variables are highly nonlinear and strongly coupled. Moreover, the traditional 
data association model has relatively few variables, and the mechanism modeling has 
high requirements for the analysis of raw materials, so the response to the process 
optimization is not timely and performance is not ideal. Subsequently, data-based 
modeling can make up for these shortcomings. Data-based modeling refers to the abstract 
organization of all kinds of data in the real world, then determine the scope of the 
database to be governed, the form of data organization etc. until the database is 
transformed into a real database [9-11]. Andrade et al. [9] used FT-MIR and PLS 
methods to predict RON in FCC. Later, Zhou et al. [11] established a prediction model 
for the increase of propylene in the secondary reaction of FCC gasoline based on L-M 
algorithm and support vector machine. For complex systems, data modeling is easier to 
establish a stable model than mechanism modeling because the internal relations of the 
system are in a black box state. Therefore, this paper adopts a data-based modeling 
method to improve the FCC process by controlling the main operational variables in the 
production process. Through numerical simulation experiments, the reliability and 
stability of the model can be verified, and the input variables can be effectively controlled 
while the S content is guaranteed. Moreover, the optimization model can be established 
to minimize RON loss, which can provide effective suggestions and references for 
reducing RON loss in the real production process. 

2. Model and Method 

In this paper, a two-stage model is established to model and optimize FCC process. Since 
the chemical system is complex, 13 main features are selected for DNN model. On the 
basis of DNN, the optimization model is further designed and solved by GA to provide 
a decision scheme, so as to minimize RON loss on the basis of environment protection. 
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2.1. Deep Learning Model of RON Loss and S Prediction 

The first stage model, as figure 1 shows, the neural network structure for S and RON 
prediction [12], including the input layer, the hidden layer, and the output layer. The 
input layer is composed of 13 groups of related independent variables. The hidden layer 
has been verified by repeated experiments to be the optimal of 7 layers, and each layer 
includes 16 nodes. 

This model is an adaptive neural network, which has introduced dropout method 
[13], and the probability of dropping nodes is used to transmit information. The white 
nodes in figure 1 are the discarded nodes. The Dropout method can improve the 
generalization ability of the model and reduce overfitting. Leaky ReLU is selected as the 
activation function in this paper. It is not easy to fall into a dead state due to the absence 
of negative output and has stronger robustness compared with the neural network 
constructed by traditional ReLU [14]. And adaptive moment estimation (Adam) [15] is 
introduced as optimization method. It can calculate the adaptive learning rate of different 
parameters according to the first-order moment estimation and second-order moment 
estimation of the gradient, and the parameter update is no longer affected by the 
stretching change of the gradient, which makes model more stable. 

 
Figure 1. Neural network architecture after dropout. 

2.2. RON Loss Optimization Model Based on Genetic Algorithm 

In the second stage, on the basis of DNN prediction model, RON loss optimization model 
is established by controlling the main operating variables to optimize RON, so as to 
reduce RON loss as much as possible in the case of low S rate. The model is as follows: 

                                              (1) 

                                                      (2) 

                                                    (3) 

where  and   are two functions that RON loss and S content have been 

trained by DNN in the previous chapter, and  and  are respectively the lower bound 

and the upper bound. 

Hidden1=16 Hidden2=16 Hidden3=16 Hidden4=16 Hidden5=16

Output=1

Input=13
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The constraint conditions and objective function in the optimization model includes 
the nonlinear function fitted in the previous chapter. Since it cannot be linearized, 
heuristic algorithm can be used to solve the model. In this paper, genetic algorithm [16] 
is chosen to solve the model. 

Genetic algorithm is a parallel, efficient and heuristic search optimization method 
based on biological genetics and evolution mechanism. By introducing the biological 
evolution process of heredity, mutation, selection and elimination into the optimization 
process. Genetic algorithm has good flexibility and global optimization ability, and 
provides a general framework for solving complex system optimization problems. 

Floating-point coding method [17] is adopted in the genetic algorithm, and the 
absolute value of the reciprocal of the current RON of the product is taken as the basic 
value of individual fitness Jb. Considering the limitation of the S content of the product, 
the difference between the current S content value of the individual product and the limit 
value (5μg /g) is obtained, and the value obtained after the unit step function filtering (i.e. 
the negative value of the data is returned to zero) is recorded as the fitness discount 
coefficient J . 

Thus, the fitness  of the  individual is expressed as follows 

                                   (4) 

The basic value of fitness determines that the core objective of genetic algorithm 
optimization is to minimize the octane loss (RON). The introduction of the discount 
factor means that an individual will be eliminated if the S content of the product exceeds 
the limit, so that the optimal solution with the greatest reduction in the octane loss (RON) 
can be found under the strict constraint that the S content of the product does not exceed 
the limit. 

3. Simulation and Analysis 

In this paper, the simulation experiment of the model is carried out by Python, and 305 
samples are collected from Sinopec Gaoqiao Petrochemical Real-time Database 
(Honeywell PHD) and LIMS experimental database. There are 13 main features, as 
shown in table 1. The first five are operational variables, which can be controlled as 
independent variables of the model. The others are non-operational variables, which 
means they aren’t decision variables in the second stage model, so they are default to 
constants in the samples. 

3.1. K-fold Cross Validation for Prediction Model 

K-fold cross validation [18-19], as a verification method of DNN hyperparameters, it 
obtains as much information as possible from limited learning data, and to a certain 
extent, avoid the problem of over-fitting and under-fitting. Therefore, we have already 
taken this method to train the neural network, and test the generalization ability of the 
trained model, therefore, we can find the most appropriate hyperparameters. 
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Table 1. 13 main features. 

Index Name Unit Min Max 
1 D-109 pressure MPa 0.1 0.15 

2 Nitrogen inlet pressure MPa 0.95 1 

3 Stabilize tower top pressure MPa 0.6 0.7 

4 D-107 bottom pressure MPa 0.1 0.2 

5 Blower inlet pressure MPa -0.1 0.1 

6 S content μg/g - - 

7 RON - - - 

8 Saturated hydrocarbon v% - - 

9 aromatic hydrocarbon v% - - 

10 bromine number gBr/100g - - 

11 density (20℃) kg/m³ - - 

12 coke wt% - - 

13 S wt% - - 

This paper conducts nine-fold cross validation for numerical samples. The 305 
samples are divided into 9 pieces, of which 8 pieces are used as the training set and 1 
piece as the setting of verification, with 100 iterations. Where, the training error train 
loss represents the loss function value of the training model using the training set data. 
Namely, the root means square error between the predicted RON loss value and the actual 
RON loss value. Validation error valid loss represents RON root mean square error 
obtained by using validation set data after training the model with training set data. As 
can be seen in figure 2, the result of each fold and cross validation can be stable after 100 
iterations, all the curves are declining continuously. And the loss function can reach the 
minimum value, indicating that the model is continuously optimized and reaches the 
optimal value. The calculation results of train loss and valid loss are 0.0758 and 0.785 
separately. 

Train loss measures the fitting ability of the model on the training set, while Valid 
loss measures the fitting ability of the model on the new data [20], namely the 
generalization ability of the model. Both values are very small and close to each other, 
so our RON prediction model based on deep neural network can be verified to have high 
accuracy and stability. 

In addition, since RON loss and S content have the same data volume and data 
characteristics, the same DNN structure is established for S content as that for RON, and 
the K fold cross validation is carried out for the prediction model of S content dataset 
through simulation experiments. After the same number of iterations, the train loss and 
valid loss of net2 are 0.0704 and 0.733 separately, from which it can be seen that the 
DNN model of S also has good performance. 

3.2. The Convergence Process of the RON Loss Optimization Model 

As for the parameter setting of the genetic algorithm in the second stage optimization 
model, after repeated experiments, this paper finally determines that the population size 
of the genetic algorithm as 50, and the termination evolution algebra is set as 800 
generations. When the termination condition is RON lower than 30%, the next generation 
cannot find a better solution. The crossover probability is 0.5, and the mutation 
probability is 0.001. 
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Figure 2. K-fold cross validation result of DNN. 

Subsequently, the optimization solution is carried out, firstly we have showed the 
experiment with sample 1 as an example. 

As figure 3 shows, the iterative process of the RON loss optimization model based 
on genetic algorithm has been shown. Its vertical axis represents the minimum value of 
individual fitness in the current population. It can be seen that with the increase of 
iteration times, it gradually decreases to an ideal optimal value in step form. This process 
well reflects the natural selection characteristics of the genetic algorithm and verifies the 
effectiveness of the GA. 

In this paper, under the premise of ensuring the S content of the product is no more 
than 5 μg/g to leave the operation space of enterprise (Euro VI and China VI standards 
are not more than 10μg/g), GA is established to optimize all the samples, and the 
operating conditions of five main operating variables have been obtained to reduce the 
RON loss of each sample by more than 30%. 

Figure 4 shows that the adjustment increment of the five main variables should be 
made relative to the initial value of their samples. It can be seen as different samples, the 
adjustment of the operating conditions of the five main variables is mutually influencing 
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and competing, which also reflects that it is necessary to apply genetic algorithm of 
optimizing the RON loss model. 

GA is used to solve the optimization model of RON loss and S content, with fast 
solving speed, accurate solving results and strong model stability. It can provide a clear 
optimization scheme for cracking gasoline production, and minimize RON loss while 
ensuring that S content meets the requirements. Thus industrial chemical production 
produces the best economic benefit. 

 

Figure 3. GA convergence process for sample 1. 

 

Figure 4. The result of optimization model in all the samples. 

4. Conclusion 

In order to solve the optimization problem of cracking gasoline production in chemical 
enterprises, a two-stage model has been established in this paper. In the first stage, based 
on the experimental results, a DNN-RON loss prediction model is set up in this paper. 
And then the K-fold cross validation test model is adopted to verify the high accuracy 
and stability of the model. In the second stage, genetic algorithm is adopted to solve the 
problem, so that the optimal solution with minimum RON loss can be found under the 
strict constraint of S content of the product. The optimal strategy obtained can provide 
effective guidance for chemical enterprises to improve efficiency and reduce cost. 
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