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Abstract. In order to predict the impact of wastewater from an aluminum plant 

treatment station on the groundwater environment under abnormal conditions (i.e., 

sewage leakage accident). Through the investigation of hydrogeological 
conditions, and then the permeability coefficient of the aquifer was measured 

through borehole injection tests. Finally, the groundwater pollution transport halo 

was obtained by numerical simulation based GMS software. The simulation results 
showed that the groundwater aquifer will be seriously polluted by COD and 

fluoride (F-) after the sudden sewage seepage accident. What’s more, the 

simulation results showed that the pollution concentration is getting higher and 
higher with time, which is analyzed to be caused by the small permeability of the 

water-bearing medium in the aquifer and the groundwater flow field was supported 

by seawater tide. 

Keywords. Groundwater pollution, sudden sewage seepage accident, ocean tide 

1. Introduction 

The simulation of contaminant transport in coastal aquifer is always a difficult problem 

[1-2], because not only the disturbance of seawater quality, but also the retardation 

effect of tide jacking on groundwater velocity should be considered in the simulation. 

An aluminum production base is proposed to be built on the Qisha Peninsula in 

Guangxi. Before its construction, it is necessary to predict the impact of the project on 

the surrounding groundwater environment and the migration speed and direction of the 

pollutants under “abnormal conditions” (i.e., sudden leakage), so that people can take 

scientific preventive measures before the leakage, and effectively prevent the harm of 

groundwater pollution. 
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2. Hydrogeological Conditions of the Study Area 

The project is located in Qisha Town, Fangchenggang City, Guangxi Province, and the 

landform of the study area is mainly erosion accumulation plain, with elevations 

ranging from -0.5 to 31 m. The area is also located in a humid, hot, and rainy 

subtropical monsoon climate zone and the average annual rainfall is 2401.2 mm. 

The sea tide in the study area belongs to diurnal tide, which is characterized by 

high and low tides twice a day for about 2-4 days. Small tide period, maximum tide 

difference 5.56 m, average tide difference 2.39 m.  

There are three aquifers in the study area: (1) Gravel pore aquifer in Quaternary 

modern marine sedimentary layer (Q4-2
m). Its lithology is mainly sandy silt and muddy 

sand. (2) Porous fractured aquifer (J1). Its lithology is siltstone, mudstone with fine 

sandstone, mudstone with siltstone, quartz sand, glutenite, etc. (3) Fractured aquifer 

(S1ln). Its lithology is argillaceous sandstone with siltstone in the upper part, 

argillaceous sandstone, and siltstone interbedding in the middle part and argillaceous 

sandstone in the lower part. 

The groundwater in the study area is mainly supplied by atmospheric rainfall, and 

the overall runoff direction is from the land to the surrounding sea area. 

According to the regional geological data and on-site hydrogeological mapping, 

there is a fault passing through the plant site (the F1 fault in figure 1). Its occurrence is 

142<35o.  

 

Figure 1. Regional hydrogeological map. 

Influence of sea tide on groundwater flow field: Based on the measured water level 

data of 98 observation points of groundwater level in the study area in 2018, the 

contour map of wet, normal, and dry seasons is drawn. From these maps, it was found 

that only in the areas where the groundwater level is higher than 2.0 m can the 

groundwater isoline be drawn. The water level below 2.0 m is disordered and irregular, 

and it is impossible to draw 1.5 m, 1.0 m, and 0.5 m isolines in the map. This 

phenomenon indicates that the area with below 2.0 m groundwater level were affected 

by lifting effect of the sea tide. It is because of the sea tide jacking effect that the 

direction of groundwater flow is uncertain. 
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3. Numerical Simulation of Groundwater Flow Field 

The mathematical model is as follows [3]. 

          

 

where: h—groundwater of head (m); Kx, Ky and Kz—permeability coefficients in x, y z 
directions (m/d ); B1—known head boundary (type I boundary); B2—water separation 

boundary; h12—river level (m); W—source sink term strength (d-1); Ω—seepage area; 

μs—storage rate (m-1), which is taken as 0.0005 according to empirical values. 

3.1. Boundary Conditions 

Plane boundary: The drainage ditch (CD section in figure 1), the coastline on the south 

(DJI section), the Xialuo River on the north (CE and EF, GH) are all the first-type 

boundaries in numerical simulation. The FGH section is surface watershed, is treated as 

the second kind of boundary (impermeable boundary). 

Moving boundary: Due to the sea tide fluctuation, some first-type boundary lines 

change from time to time, so they must be served as the moving boundaries and their 

position is determined according to the contour in the topographic map at different 

times [3].   

Vertical boundary: The upper interface of the aquifer is bounded by the water table, 

which is the free boundary, its height is obtained from the measured water level and 

interpolation. The bottom boundary of the aquifer is the top of the slightly weathered 

bedrock (argillaceous sandstone and mudstone), it is also the second boundary in 

simulation. 

3.2. Generalization of the Model 

The aquifer is divided into three following layers: loose silty clay layer (the first layer), 

strongly weathered siltstone layer (the second layer) and moderately strongly 

weathered (the third layer).  

3.3. Hydrogeological Parameters 

Determined the initial value: (1) The surface soil is silty clay, so the rainfall infiltration 

coefficient is 0.10 md-1 in dry season, 0.09 md-1 in normal season and 0.07 md-1 in wet 

season; (2) The permeability coefficient of the aquifer is given an initial value based on 

the results of the borehole injection test. 

Reverse calculation of parameters: The groundwater level and sea water level 

values obtained from seven times of observation in the survey area are input into the 

model, and the groundwater level of each observation point is fitted according to the 

unsteady flow by adjusting the relevant parameters. When the best fitting effect is 

achieved, the hydrogeological parameters and parameter zoning are obtained. The 
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fitting situation is shown in figure 2. 

3.4. Discretization of Model 

There are 100 rows and 100 columns on the simulation plane, totaling 10,000 

rectangular cells. The terrain elevation is input into the model in the form of hash 

points, and then the IDW interpolation method is used for assignment. The resulting 

terrain map is shown in figure 3 [4]. The simulation also needs to discretize the time. In 

order to deal with the moving boundaries under the influence of sea tide, the simulation 

period is set as 6h. 

0 1km

 

Figure 2. Fitting diagram of some monitoring points. 
 

Figure 3. 3D dissection of simulation area. 

4. Solute Transport Model and Groundwater Prediction 

4.1. Solute Transport Model 

Three-dimensional hydrodynamic dispersion mathematical model [5-6]: 
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Initial condition: 

    

(x,y) Ω, t=0                    (3) 

The first kind of boundary conditions: 

 

),,(),,(
1

tyxCtyxC ��

 

(x,y) 1� , t≥0                (4) 

The third kind of boundary conditions: 

),,(
3

tyxgqC
x
CD i

j
ij ��

�
�

�
	
	



�


�
�

��
    

(x,y) 3� , t≥0            (5) 

Y. Zhang and J. Lan / Simulation and Prediction of the Groundwater Pollution 613



In the above equations: C—contaminant concentration dissolved in water (M/L3); 

Dij—hydrodynamic dispersion coefficient tensor (L2/T); Xi—spatial coordinate (L); 
vi-groundwater infiltration flow rate (L/T); qs—unit flow rate of source (positive) or 

sink (negative) (l/T); θ—porosity, dimensionless; Cs—concentration of source or sink 

(M/L3); λ—order reaction rate constant (l/T); ρb—gravity of porous medium (M/L3); 

c —contaminant concentration adsorbed on medium (M/M); R—retardation factor, 

dimensionless; t-time, d.8 

The power dispersion coefficient was determined by referring to similar previous 

empirical results [7], and the present longitudinal dispersion was taken as 0.006 m. The 

transverse dispersion was taken as 1/8 of the longitudinal dispersion to take the 

empirical value [8]. 

4.2. Aluminum Oxide Project Wastewater Treatment Facility Accident Results 
Prediction 

The volume of the regulating pool in the wastewater treatment station is 30×36×10m, 

and its wetted area is 2400 m2. Assuming that the seepage rate is 4.8 m3/d and the 

leakage accident is found and treated 30 days after the accident. According to the 

surface soil permeability coefficient of 0.2, the total amount of waste water leakage 

into the underground is 28.8 m3. Based on the sewage components and concentration 

values provided in the feasibility research report of the project, the selected prediction 

factors are fluoride (F-) and COD, and their initial concentrations (source intensity) are 

9.46 mg/L (F-) and 250 mg/L (COD) respectively. 

4.2.1. Prediction of COD Pollution Halo Migration 

The COD concentration of 3.0 mg/L (Class III groundwater quality standard) is taken 

as the dividing line of pollution halo. COD can be degraded under the action of 

microorganisms in the aquifer. According to the current research, the speed of COD 

degradation is in accordance with the law of first-order reaction kinetics. That is, the 

COD degradation rate question is [9]: 

0

kt
tC C e� �                             (6) 

where: Ct is the COD concentration at time t, mg/L. C0 is the initial concentration of 

COD infiltration into the aquifer, mg/L; t is the time of COD staying in the aquifer, d; k 

is the attenuation rate coefficient, d-. 

According to the results of many experiments so far, the decay rate coefficient k is 

related to many factors such as water temperature, initial COD concentration, the 

concentration of inorganic reducing substances such as sulfur ammonia, and the content 

of dissolved oxygen (DO). In general, the decay rate coefficient k= 0.023~0.086 d-1 in 

the surface environment [10]. Considering the low water temperature and dissolved 

oxygen content in the aquifer of the study area, k = 0.004 d- (equivalent to 5.75 ~ 21.5 

times slower than the decomposition rate in the atmosphere) is used to simulate. 

The prediction results of COD pollution halo in aquifer by GMS are shown in table 

1. 

4.2.2. Forecast of Fluoride Pollution Halo Migration 

The prediction results are shown in figure 4 and table 1. 
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Table 1. COD and F diffusion characteristics in the aquifer. 

Time after 
leakage 

COD F 
Downward migration 
distance (m) 

Center concentration of 
COD (mg/L) 

Downward migration 
distance (m) 

Center concentration 
of F (mg/L) 

100d 87.48 69.04 67.95 0.25 

1000d  2.52  3.05 219.5 0.89 

10000d 0  2.7(background value) 297.27 1.96 

 
(a) 100 days                   (b) 1000 days 

 
(c) 10000 days 

Figure 4. Migration diagrams of contaminated halos at 100d,1000d and 10000d after the leakage of F in 

aquifer 

Table 1 shows that after the leakage accident, the pollution of the groundwater 

environment in the study area shows different characteristics from other places, that is, 

the concentration of F in the pollution center will increase with time. After analyzing 

this unusual phenomenon, it is believed that this is mainly caused by the jacking effect 

of seawater. Because the groundwater flow at the leakage point is basically in a 

stagnant state under the action of sea tide jacking, it is difficult for pollutants to migrate 

downstream. With the passage of time, more and more pollutants infiltrate from the 

vadose zone, which makes the pollutants in the aquifer under the leakage point 

accumulate more and more, and makes the concentration of the pollution halo center 

become higher and higher with the passage of time. 
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5. Conclusion 

(1) The simulation results show that the leakage sewage under abnormal condition will 

seeped into groundwater and diffuse northward, and finally discharge to Xialuo river. 

However, because there is no pumping well between the leakage point and Xialuo river, 

the leakage accident will not affect the drinking water of the surrounding residents. 

(2) After a spill, the concentration at the center of pollution halo will increase with 

time. This unusual phenomenon is mainly due to the low permeability of the local 

water bearing medium and the jacking effect of seawater on the groundwater flow field. 
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