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Abstract. This paper presents an electromagnetic vibration energy harvester 
utilizing 3D MEMS coils and multi-mode structure to improve the output power 
and broaden the frequency band. We fabricated and assembled the prototype, with 
a pair of 3D coils fabricated by lithography, silicon etching, silicon direct bonding 
and copper electroplating, et al., which are compatible with CMOS processes. The 
numerical simulation was conducted to analysis the vibration modes of the spring-
mass system, which revealed the multi-mode mechanism of serpentine springs. 
We also tested the output power-frequency curves for different load and excitation 
acceleration to investigate the optimal load resistance and the influence of 
excitation. The test results showed that the proposed prototype can generate 
1.2μW power under 992Hz for 1g acceleration with a half-power bandwidth of 
65Hz, which are higher than some recent published data, proving the superiority of 
proposed structure. 
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1. Introduction 

With the demand for sustainable and renewable energy increases, it is useful to develop 

alternative energy strategies, such as harvesting vibration energy. And vibration energy 

harvesting is a potential technology to replace batteries for wireless sensor networks. 

Therefore, the vibration energy harvesting technology has attracted the attention of 

many researches. The mechanisms utilized for vibration energy harvesters (VEH) 

include electromagnetic, piezoelectric, electrostatic and triboelectric, among which the 

electromagnetic vibration energy harvesters (EM-VEHs) have been the primary focus 

of research due to high power-density and long lifetime.  

However, most MEMS EM-VEHs employ planar coils, which cause large 

magnetic leakage and limit the output performance [1, 2]. The MEMS 3D solenoid coil 

demonstrated by Xu et al. based on high-aspect-ratio through silicon vies (TSV) shows 

potential to overcome the above-mentioned problems [3, 4]. In Ref. [5], we proposed a 
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doi:10.3233/ATDE210276

196



structure scheme design and a dynamic model based on MEMS 3D coils. The 

application of 3D coils can significantly improve the output power of MEMS VEHs.  

Simultaneously, a large number of researches have focused on widening the 

frequency bandwidth, such as resonance frequency tuning [6], nonlinear dynamics [7, 

8], multi-mode vibration [9, 10]. Commonly, the multi-mode vibration is realized by 

introducing multiple vibrators to form a multi-degree of freedom system. However, the 

multiple modes are relatively independent, and the resonance frequency bands are far 

apart, which makes it difficult to match the VEH’s resonance frequencies with the 

environment vibration.  

In this paper, we proposed an EM-VEH using 3D MEMS coils. A silicon steel 

sheet was inserted into the coil to constrain the magnetic field, and hence, to 

enhancement the output power and efficiency. We also adopted a random design 

method by utilizing eight planer serpentine springs with high-sensitivity. Under the 

influence of random disturbance and process deviation, the resonance points of these 

planer springs will be randomly distributed in a certain frequency band, and 

consequently, to realize a concentrated multi-mode vibration and broaden the effective 

working frequency band of EM-VEHs. 

2. Materials & Methods 

2.1. Structure Design 

The structure of EM-VEH using MEMS 3D coils is shown as figure 1a. The MEMS 

coils are embedded in a silicon substrate via deep Si etching, silicon bonding and Cu 

electroplating. Each coil has 53 turns. And the height is 2mm, which is equal to the 

thickness of two bonded wafers. The wire diameter is 100μm, and the turn pitch is also 

100μm. A silicon steel sheet is inserted to the coils to build a closed magnetic loop. The 

magnet is arranged on the centre plane of two coils and vibrates along the direction 

perpendicular to the coil axis. The arrangement of coils and silicon steel sheet is shown 

as figure 1b. A pair of planar copper springs are glued on both side of the bonded 

substrate. The structure parameters of springs are shown in figure 1c.  

Under the excitation of external environment, the relative position between the 

permanent magnet and the silicon steel sheet changes, thereby generating an induced 

electromotive force in the coils. The application of 3D coils and silicon steel sheet can 

increase the flux gradient during vibrating, and consequently, improve the output 

power. 

These two planar springs total have eight long serpentine springs with thickness of 

0.2mm. This structure has a lower stiffness coefficient along vibration direction, and a 

larger stiffness coefficient along non-vibration direction. And these springs have a large 

number of turns, which makes the resonance modes instable to a certain extent. With 

the deviation of processing and assembly, the vibration modes of different springs are 

easily to separate from each other, thereby broadening the resonance frequency band.  
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Figure 1. (a) The overall structure design of VEH; (b) the arrangement of coils and iron core; (c) structure of 
planar spring. 

2.2. Prototype Fabrication  

The coils of this device are fabricated by MEMS technology. Figure 2 shows the 

fabrication process of 3D coils. The whole process includes two stages. The first stage 

includes silicon etching and silicon bonding, corresponding to step (1-9). The 

substrates used are 1mm-thick double-polished intrinsic silicon wafer. A silicon mould 

with through holes, horizontal wire grooves and a silicon steel sheet groove is 

fabricated by silicon oxide etching and double-side silicon deep etching process. Then 

two layers of silicon wafers are aligned and bonded to form a complete 3D loops and a 

silicon steel sheet space inside the substrate.  

The second stage is to fill the copper into the silicon mould by electroplating, 

corresponding to step (10-12). Firstly, a seed layer is sputtered on the back side of the 

bonded substrate. And then, electroplate Cu until it fills the horizontal grooves and the 

through holes. Finally, remove the excess Cu on the surface by chemical mechanical 

polishing. 
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Figure 2. Fabrication process of MEMS 3D coils. 

Figure 3 exhibits the coil samples during the fabrication. And we tested the 

electrical performance of the coils. The total size of single coil is 13.1mm×17.4mm. 

The tested coil resistance is 3.91Ω, and the DC inductance after inserting the iron core 

is 249.06μH.  

 

Figure 3. Coil samples after (a) silicon direct bonding, (b) electroplating, and (c)CMP and dicing. 

Figure 4a illustrates the assembly process of the prototype. Firstly, align and fix 

the bottom spring and permanent magnet. Then insert the silicon steel sheets into the 

coils and fix them on both sides of the permanent magnet, while ensuring a suitable air 

gap size, which is 0.4mm in this study. In this step, it is also necessary to connect the 

two silicon steel sheets with magnetic conductive glue to realize the closure of the 

magnetic circuit. Next, connect the signal wire to the electrodes of the coils. Finally, 

install the upper spring to complete the assembly of the prototype. Figure 4b is the 

prototype photo after the assembly process. In this design, we also added some 

auxiliary structures to limit the vibration amplitude and improve the reliability.  

 

Figure 4. (a) Assembly process of prototype, and (b) the prototype photo. 
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2.3. Modal Analysis 

In this study, we conducted a simulation analysis on the vibration modes of the 

mechanical system composed of the vibrator and springs by using ANSYS software, 

mainly focusing on the modal changes of the springs under different frequency 

excitations. Figure 5a shows the simulating model. 

 

Figure 5. (a) Simulation model and (b) computational grid. 

The computational grid is demonstrated in figure 5b. The number of elements is 

589,988, and the nodes number is 1,090,035. In this simulation, we did not consider the 

electromagnetic effects of iron core and coils. Hence, in the calculation results, the 

modes which should be associated with the electromagnetic effect have no practical 

reference significance. In consequence, we only analysis the modal bifurcation 

phenomenon of the springs. The relevant modes and corresponding frequencies of each 

order are listed in figures 6a-6e. It can be seen that the springs have multiple vibration 

modes around 1146Hz, indicating that the modes of springs are quite unstable and 

easily disturbed by random factors. Therefore, it can also be judged that due to the 

inevitable random disturbances such as processing and assembly deviation, the actual 

vibration modes of springs will diverge near the resonance point, resulting in a 

broadband response.  

 

Figure 6. Vibration modes for spring-mass system. 
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2.4. Experiment Apparatus 

We connected an adjustable resistor with one of the coils to form a closed load circuit, 

shown as figures 7a and 7b. By testing the voltage of the load resistance, the output 

power of the VEH can be converted.  Since the two coils are completely equivalent, in 

this study, we tested the output power of one coil in this device to simplify the 

experiment process.  

The test system is illustrated in figure 7c. The VEH is excited by a portable shaker 

(PCB 9100D), which integrates a closed-loop control system to generate the vibration 

excitation of given amplitude and frequency. The voltage signal is collected by a data 

acquisition card (DAQ, Advantech USB4713) and then processed by LabVIEW 

platform.  

 

Figure 7. (a) The experiment circuit, (b) photo of circuit and (c) experiment system. 

During testing, the excitation frequency was increased or decreased gradually 

while the amplitude was kept constant. We tested the steady-state signal of output 

voltage at each excitation frequency. Then the output power at each frequency can be 

calculated by using the root mean square (RMS) voltage.  

3. Results 

3.1. Influence of Load Resistance 

First, the output performance under up-sweep and down-sweep frequency are 

compared under 1g (1g=9.8m/s2) acceleration and 10Ω load. Figure 8 shows the output 

power changes with frequency of excitation. It can be seen that the output power for 

up-sweep and down-sweep is almost equal. Therefore, in subsequent experiments, we 

only tested the output power during up-sweep process. In addition, the VEH also 

exhibits multi-peak characteristic in tested frequency band (850-1100Hz), which is 

similar to the simulation results, indication that there is a bifurcation phenomenon of 

vibration modes in this frequency band. Compared with single frequency vibration, the 

output bandwidth has been broadened.  
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Figure 8. The power-frequency curves for up-sweep and down-sweep. 

Then we test the output power for different load resistance from 2.5Ω to 15.0 Ω 

under 1g acceleration and frequency band form 850Hz to 1100Hz to determine the 

optimal load for this device. Figures 9a-9e shows the power-frequency curve for 2.54Ω, 

3.74Ω, 5.04Ω, 10.0Ω and 15.0Ω separately. The amplitude-frequency response of the 

VEH remains stable and repeatable under different load resistances. The peak power at 

resonance frequency for different load resistance are depicted in figure 9f, indicating 

that the optimal load resistance appears at 3.74Ω, which is approximately equal to the 

coil resistance. The maximum output power reaches at 1.20μW for 1g excitation 

acceleration, meanwhile relatively high output power appears in frequency band of 

910-916Hz, 937-942Hz, 953-960Hz, 971-1002Hz and 1008-1013Hz, with a total half-

power bandwidth of 54Hz.  

 

Figure 9. (a)-(e) The output power-frequency curves for different load resistances and (f) the relationship 
between peak power and load resistance. 
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3.2. Influence of Excitation Acceleration 

We also investigated the influence of excitation acceleration on the output performance 

of VEH, shown as figures 10a-10b, which illustrates the power-frequency curves for 

load resistance of 2.54Ω and 3.74Ω separately. Compared with the output performance 

under 1g excitation, the output power of VEH under 2g excitation has been 

significantly improved. Simultaneously, the amplitude-frequency cure still exhibits 

multi-peak characteristics, and the resonance peak frequency is almost unchanged. The 

difference is that the maximum power appears at 981Hz and 982Hz for 2.54Ω and 

3.74Ω separately, while it is 992Hz for both load resistances under 1g excitation. In 

addition, the excitation acceleration does not influence the optimal load resistance, 

which is also 3.74Ω for 2g excitation.  

However, with the increase of input acceleration, the normalized power density 

(NPD, NPD=output power/(volume×a2)) decreases. For 1g acceleration, the normalized 

power density is 0.16μW/cm3g2, while for 2g acceleration, this value is 0.12μW/cm3g2. 

Additionally, the output power has relatively high value in frequency band of 936-

942Hz, 949-953Hz, 957-962Hz, 973-996Hz and 1009-1015Hz, with a total half-power 

bandwidth of 44Hz, which is slightly narrower than that of 1g acceleration. 

 

Figure 10. The output power-frequency curves under 1g and 2g acceleration for (a) 2.54Ω load and (b) 
3.74Ω load. 

Table 1 summarized the output performance of several recently published 

researches about broadband vibration energy harvester. It can be seen that the proposed 

structure in this paper has higher output power and broader frequency bandwidth than 

that of some previously published data on VEHs, which also proves that the structure 

utilizing 3D coils and broadband design method proposed in this paper are 

advantageous. 

Table 1. Summary of the reviewed VEHs output performance. 

Ref. Output power (μW) Acceleration (g) NPD (μW/cm3g2) Frequency bandwidth (Hz) 

[11] 5×10-4 1 1.56×10-2 19 

[12] 5.5×10-2 1 0.157 —— 

[13] 2 7.5 0.0432 40 

[14] 2.3×10-3 1.5 1.07×10-3 46 

Proposed 1.2 1 0.16 54 
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4. Conclusion 

This paper presents an EM-VEH based on CMOS-compatible 3D MEMS coils and 

multi-mode structure. A pair of silicon steel sheets are inserted into the coils to close 

the magnetic path. Two planar springs which including eight serpentine branches are 

installed on the top and bottom surface of the VEH.  

MEMS technologies including lithography, deep silicon etching and TSV 

electroplating are applied to fabricate the 3D coils. Consequently, the VEH prototype is 

assembled by integrating the iron cores, springs, magnet and signal wires. Numerical 

simulation is conducted to analysis the vibration mode of the spring-mass system. The 

results indicate that the vibration modes of serpentine springs are unstable and will 

separate from each other under random disturbance, which has the potential to broaden 

the frequency band of VEH. 

Additionally, we test the output performance of the VEH prototype in 850-1100Hz 

frequency range. The output power reaches maximum value when load resistance is 

3.74Ω, which is approximately equal to the coil resistance. Under 1g acceleration, the 

peak power is 1.2μW with half-power bandwidth of 54Hz, corresponding to the NPD 

of 0.16μW/cm3g2. When the excitation acceleration increases to 2g, the peak output 

power also raises to 3.49μW, while the NPD reduces slightly to 0.12μW/cm3g2. The 

peak power and half-power bandwidth of the VEH proposed in this paper are improved 

compared with the output performance of some published data.  
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