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Abstract. For the increasingly prominent problems of wind turbine maintenance, 

using edge cloud collaboration technology to construct wind farm equipment 

operation and maintenance framework is proposed, digital twin is used for fault 

prediction and diagnosis. Framework consists of data source layer, edge computing 

node layer, public or private cloud. Data source layer solves acquisition and 

transmission of wind turbine operation and maintenance data, edge computing 

node layer is responsible for on-site data cloud computing, storage and data 

transmission to cloud computing layer, receiving cloud computing results, device 

driving and control. The cloud computing layer completes the big data calculation 

and storage from wind farm, except that, based on real-time data records, 

continuous simulation and optimization, correct failure prediction mode, expert 

database and its prediction software, and edge node interaction and shared 

intelligence. The research explains that wind turbine uses digital twin to do fault 

prediction and diagnosis model, condition assessment, feature analysis and 

diagnosis, life prediction, combining with the probabilistic digital twin model to 

make the maintenance plan and decision-making method. 

Keywords. Digital twin, edge-cloud collaboration, wind turbine, equipment 

operation and maintenance, prognostics; remaining useful life 

1. Introduction 

At present, the operation and maintenance of wind turbines (wind turbines for short) 

lags behind the development of the wind power industry. Most of them adopt manual 

operation and maintenance mode. Wind power equipment maintenance involves many 

parts and links, and the manufacturer's own equipment detection system has 

compatibility problems. Wind turbines are usually installed in remote locations, far 

apart, and inconvenient transportation, which causes a lot of inconvenience to the 

maintenance of wind power equipment. The equipment is installed at the end of a wind 
power tower with a height of tens or even hundreds of meters, which is difficult to 

maintain and costly. Statistics show that maintenance costs for onshore and offshore 
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wind turbines account for 10% to 15% and 20% to 35% of wind farm revenue [1]. In 

order to improve the operating efficiency of wind turbines and reduce maintenance 

costs [2], scholars have done a lot of research on the failure prediction and diagnosis 
modes, prediction algorithms, and diagnosis mechanisms of the main components of a 

single set of wind turbines [3]. Research on the operation and maintenance of wind 

turbines in the entire wind farm. This paper proposes to use edge-cloud collaboration 

technology to build a full-field wind turbine operation and maintenance platform to 

achieve unified real-time measurement and control of wind turbine operation and 

maintenance. The edge computing end is responsible for the daily operation and 

maintenance data processing of the wind turbine on-site, and cloud computing is 

responsible for the real-time data of the entire wind farm. Recording, visualization, data 

analysis, optimization and correction of fault prediction and diagnosis modes and 

algorithms, and downloading the results to edge computing nodes. Aiming at the fault 

operation and maintenance prediction of a single set of wind turbines, it is proposed to 
adopt digital twin and probabilistic twin digital drive technology to realize fault 

prediction and diagnosis. 

2. Wind Turbine Fault and Maintenance Status 

Common electrical fault operation and maintenance costs of wind turbines account for 

about 70% of the entire wind turbine operation and maintenance costs, and other parts 

account for about 30%. The approximate distribution rate of the faults of each 

component of the wind turbine is shown in figure 1 [4], and the approximate time 

required for shutdown and maintenance caused by the failure of each component is 

shown in figure 2 [4]. 

      

Figure 1. Proportion of failure of each component.    Figure 2. Downtime due to component failure. 

The parts that frequently fail are generators, main shafts, gearboxes, yaw systems, 

pitch systems, hydraulic systems, racks and wind turbine control systems. For example, 

wind power mainly relies on the rotation of the turbine blades to convert kinetic energy 

into electrical energy, and the movement speed of the blade tip reaches about 300 km/h. 

Long-term work in the field under the sun and rain will cause corrosion, cracks or 

degradation of the blade coating, which will affect its performance and then affect the 

power generation. At present, there is no good way to detect the blade health status, and 
there is a lack of blade maintenance historical data. Statistics show that the faults of 

wind turbines caused by sensors account for about 14%, and the faults caused by 

sensor-related system damage account for about 40% [5]. 
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3. Edge-Cloud Collaborative Wind Turbine Operation and Maintenance Platform 

The platform refers to version 3.0 of the edge computing reference architecture 
proposed by the Edge Computing Alliance, which is composed of a terminal data 

source layer, an edge computing node layer, and a public cloud/private cloud layer, as 

shown in figure 3. The edge computing node layer is between the public cloud/private 

cloud layer and the terminal data source layer. One end receives data sent by various 

devices at the terminal data source layer and controls the equipment, and the other end 

performs service collaboration and business management collaboration with the public 

cloud and private cloud layer. Application management collaboration, intelligent 

collaboration, data collaboration and resource collaboration. 

 

Figure 3. Wind turbine operation and maintenance framework. 

3.1. Platform Terminal Data Source Layer 

The terminal data source layer is composed of various data interfaces of wind turbine 

equipment, parts and instruments. The large amount of data generated by the operation 

of these equipment is the basis of digital operation and maintenance. If these devices 

need to implement digital operation and maintenance but do not have a data output 
interface, wired or wireless shock and vibration sensors or acceleration sensors can be 

installed at the predicted location of the device to form a sensor network, which can be 

collected and transmitted in real time. Data to intelligent edge devices. At present, 

various sensors installed in wind turbines can transmit data with data terminals through 

RS-232, RS-485, input and output interfaces, and use MODBUS protocol to connect to 

various popular network interfaces, network protocols, network topologies, Internet 

deployment and configuration, system management and protection, etc., can make full 

use of and absorb advanced technologies in the Internet field and various industrial bus 

interconnections. Wind turbines are distributed in a wide area. Edge computing is the 

edge computing of the network platform that is close to the object or data generating 

end. The terminal data source layer completes sending data to the edge node computing 

layer and accepts the control of the edge computing node. 
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3.2. Platform Edge Computing Node Layer 

The edge computing node layer is composed of the infrastructure layer (ECIaaS), the 

edge computing platform layer (ECPaaS) and the service (ECSaaS) layer. The ECIaaS 
layer is composed of edge gateways, edge controllers, edge clouds, edge sensors and 

other hardware, with control function modules, analysis function modules, optimization 

function modules, computing network storage calling interfaces, various computing 

capabilities, network resources, storage resources, etc., It is the business core based on 

the digital twin and edge-cloud collaborative system. Edge nodes are responsible for 

high-reliability data collection and processing, and receive equipment failure prediction 

and diagnosis models established or iterated by the back-end cloud computing platform 

based on big data calculations, expert libraries and rules, product knowledge bases, etc., 

and realize equipment on-site early warning. 

The ECPaaS layer is responsible for edge device data collection and analysis, 

distributed intelligence/reasoning, edge application environment, online monitoring, 
etc., and the data source layer data reception and control instructions, and the cloud 

computing platform for data, intelligence, application management, and business of 

synergy. Data collection enters the edge layer through fieldbus, device network, 

wireless network, mobile communication, etc. Distributed intelligence/reasoning is 

completed by edge computing resources, which are composed of the CPU, memory, 

and read-write interface resources of each edge intelligent node device. When the 

computing power of a single edge node is limited, edge computing can call the CPU 

and memory of other edge nodes according to the rules to meet the needs at the time, 

and unload the task after the calculation is completed to release the CPU and memory 

resources. The storage resource is responsible for storing the data collected, generated 

and received by the edge device in the memory and disk storage of the edge device in 

accordance with the distributed storage rules. Data reception and collaboration are 
completed through network resources. Network resources mainly involve mobile 

communications, broadband Internet, Internet of Things, multi-source shared databases, 

etc., responsible for data upload and release, upload and upload useful data to the cloud 

computing platform, and release is cloud computing. The results and control 

instructions are transmitted to the equipment at the data source layer. In addition, 

calling API module, control module, analysis module and optimization are all 

functional modules that support optimization of fault prediction and diagnosis. 

The ECSaaS layer consists of edge computing application software, such as online 

monitoring and evaluation, equipment failure analysis and diagnosis, remaining life 

prediction, failure prediction, maintenance plan formulation and decision-making, etc., 

and performs service application-level collaboration with cloud computing. 

3.3. Platform Public Cloud/Private Cloud Layer 

The cloud computing layer is composed of a large number of servers, storage devices, 

network devices, and system display devices that constitute the backend of the entire 

wind farm equipment management. It links with edge computing node equipment 

through the Internet to complete system big data processing and send instructions to the 

edge layer, so that edge computing nodes can complete software upgrades, model 

corrections, algorithm iterations, etc. in time. At the same time, the received big data is 

displayed, and if the system fails, an early warning will be sent in time. Workers obtain 

real-time production information, equipment operating conditions, abnormal alarms, 
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production scheduling decisions, etc. through the terminal, and issue instructions to 

edge computing nodes through the terminal device. This layer uses data mining 

algorithms and artificial intelligence algorithms to clean, cluster, and mine the 
operating data of these equipment based on the huge amount of data collected by 

similar wind turbine equipment, and establish or iterate fault diagnosis expert 

knowledge. Ref. [6], constantly updates the expert knowledge base and constructs new 

fault diagnosis rules. The expert knowledge base and diagnosis rules can be 

downloaded to the intelligent edge terminal, improving the speed of equipment 

diagnosis.  

4. Device Operation and Maintenance Driven by Digital Twin (DT) 

4.1. Overview of Key Technologies for the Operation and Maintenance of DT Drive 
Equipment 

The concept of DT was put forward by Grieves [7] in the product life cycle 
management course of the University of Michigan in 2003. Ref. [8] defines a DT as: a 

technical means with real-time synchronization and original mirroring, which can 

realize the interaction and integration of the physical world and the digital world. In 

2017, researches on DT modeling, physical information fusion and service application 

have been carried out, focusing on the analysis of DT technology and related industry 

relations, the establishment of virtual models, the use of twin data fusion analysis, 

service application guidelines, etc. [9]. The essence of the DT is to use digital 

technology to complete real-time data recording, real-time simulation optimization, and 

virtual verification of physical entities, so that physical entities can be simulated, 

monitored, controlled, fault diagnosed, predicted, and early-warned. The DT drive 

system is mainly composed of three parts: a physical entity, a physical 
multi-dimensional model, and a data channel composed of sensors and other devices. 

The data channel realizes the interaction and common intelligence between the physical 

entity and the physical multi-dimensional digital model. The architecture diagram is 

shown in figure 4 shown. 

The implementation roadmap for fault prediction and maintenance using digital 

twin technology includes the creation of DT; acquisition of multi-dimensional 

heterogeneous data; preprocessing of multi-dimensional heterogeneous data; model 

training and creation of equipment failure prediction and diagnosis models or 

algorithms; prediction of equipment failures based on algorithms and diagnosis of 

faults; six steps of equipment operation and maintenance for predicting equipment life 

and maintenance plan formulation and decision-making (figure 5). 
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Figure 4. Based on the DT model. 

 

Figure 5. Steps of DT drive equipment operation and maintenance. 

4.2. Step 1: Creation of the Digital Twin 

The step1 is the creation of a digital twin. DT modeling focuses on equipment physical 

performance characteristics and equipment operating state parameters. Model 

parameters should be consistent with physical equipment operating data. The key to 

digitizing physical entities is the extraction of physical entity-related parameters and 

the establishment of prediction models. The extraction of physical entity parameters 
can first decompose the functions of the physical entities, and then digitize the 

functions to establish a DT system and physical device models. However, when 
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extracting parameters, multiple iterations are required to establish a complete 

virtual-real consistency model. Modeling can also use mature software, for example: 

MathWorks' MATLAB, Simulink, Simscape and other software packages. The CAD 
drawings and 3D models of the equipment used to create the DT can generally be 

obtained from the original factory. After importing the equipment plane or 3D drawing 

into some commercial software, a multi-body interactive simulation model of the 

equipment running 3D model can be constructed. The construction of the equipment 

digital twin model requires high calculation and memory requirements for the system. 

Therefore, the modeling process can be carried out on the cloud computing platform. 

By using the cloud computing platform's strong computing power and large storage 

space, a variety of modeling software can be installed to adapt to the need to model 

parts with different characteristics. After the model is built, it is installed on the edge 

node to realize on-site inspection and evaluation. 

4.3. Step 2: Obtain Multi-dimensional Heterogeneous Data 

The step2 is to obtain multi-dimensional and heterogeneous data. The operation and 

maintenance of equipment is mainly to judge the operating status of the equipment 

based on the multi-dimensional heterogeneous data such as equipment working 

condition data and numerous sensor data on site. These data are divided into two 

categories, one is the data in the normal state of the device, and the other is the data in 

the abnormal state of the device. 

The data to obtain the normal status of the equipment can be obtained from the 

real-time record of the equipment's daily operation status detection system (SCADA). 

Although these data may be insufficient and incomplete, the data can be increased by 

changing the system settings or adding detection points. 

It is difficult to obtain data when the device is in an abnormal state. Under normal 

circumstances, there is very little data when the device fails. If the equipment is 
maintained too frequently in the field, there may be no faults and no fault data, or the 

equipment will never be allowed to fail, and there will be no fault data. To this end, 

data can be obtained from other departments within the enterprise, or from partners 

upstream and downstream of the supply chain. In order to prevent the lack of failure 

data from becoming a fatal obstacle to predictive maintenance, simulation tools can 

also be used to generate test data and combine this data with sensor data that can be 

used to construct and verify predictive maintenance algorithms, such as Simulink from 

MathWorks, etc. The tool simulates fault data, recognizes warning signals from 

available operating data, and generates sample failure data from the simulation tool; it 

can also dig out fault data from the trend of equipment operating efficiency decline, 

and use statistical methods such as PCA to reduce dimensionality to discover massive 
process data the rule of summarization, and the resulting fault data is used as 

equipment operation and maintenance data. 

4.4. Step 3: Multi-dimensional Heterogeneous Data Preprocessing 

In the equipment operation and maintenance system driven by the digital twin, the 

physical entity data is also input into the digital twin at the same time, so that the 

digital twin and the physical entity operate synchronously. These data will enter the 

digital twin after data cleaning, integration and transformation, and data reduction, and 

be used for the creation of fault prediction and diagnosis models. 
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Data cleaning. In the equipment operation and maintenance system driven by the 

digital twin, the automatically collected data may be missing, and there are multiple 

algorithms for filling the missing data. Considering the large amount of real-time 
detection data of the equipment, the mean filling method is used to fill in the occasional 

missing data. The method of missing data has little effect on the accuracy of the data. 

Data integration and transformation. Data integration is to merge data from 

multiple data sources and store them in a consistent data store (such as a data 

warehouse). These data sources may include multiple databases, data cubes or general 

files. Data integration has three main problems: eliminate redundancy Monitoring and 

processing of residual data and data value conflicts and pattern integration and object 

matching. Data transformation is to transform or unify the data into a form suitable for 

mining. The method is very poor normalization transformation, feature scaling and so 

on. There are three types of range normalization transformation: minimum-maximum 

normalization, z-score normalization, and decimal calibration normalization. The 
minimum-maximum normalization method is selected in the preprocessing of wind 

turbine operation and maintenance data. 

Min-max normalization is a linear transformation of the original data, mapping the 

data value to [0, 1]. The conversion formula is as follows: 

x* =(x-min)/(max-min)                       (1) 

In equation (1), x* is the normalized data, x is the original data, and min and max 

are the smallest and largest data in the data, respectively. This method preserves the 

relationship between the original data and is also the simplest method. The 

disadvantage is that if the values are concentrated and a certain value is large, each 

value after normalization is close to 0, and there will be little difference. (Such as 1.1, 

1.2, 1.3, 1.4, 1.5, 1.6, 9.4 this set of data). If the value range of the current attribute 

[min, max] is exceeded in the future, the system will report an error, and the min and 
max need to be re-determined. In order to solve this problem, a sliding window is 

opened for the data source according to the time sequence, and the window data is 

continuously extracted for normalization, so as to obtain a batch of more accurate 

normalized data, and then use the min-max method to iterate to obtain relatively 

accurate data. 

Data reduction. Data reduction is to obtain a data subset whose result is much 

smaller than the original data source, but still close to maintaining the integrity of the 

original data, which is convenient for calculation and processing. For the scene of 

digital twin application collecting big data on-site, there are two types of reduction for 

multi-source heterogeneous data sources: quantity reduction and dimensionality 

reduction. The cluster analysis method of quantity reduction uses the cluster center data 
as a subset of the original data; the dimensionality reduction extracts the data of the 

main dimensions from the original data, so as to reduce the number of variables or 

attributes in the data and map the original data to in a space with a small dimension, the 

data corresponding to the dimension with a large amount of information is retained, and 

the dimensionality reduction is divided into lossless and lossy. For the digital twin 

driving mode, the dimensionality reduction adopts a hybrid method of wavelet 

transform and principal component analysis. The methods and algorithms of 

multi-dimensional heterogeneous data preprocessing are not only the above, they need 

to be further verified in practice. 
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4.5. Step 4: Model Training  

Model training includes the creation of equipment failure prediction and diagnosis 

models or algorithms, and feature value extraction. The digital twin driving mode is 
based on the establishment of physical digital twins and real-time online detection, 

using real-time dynamic data to create fault prediction models and algorithms. In order 

to obtain more equipment failure information, the digital twin has a dynamic interactive 

function and the failure information is added to the model. For example, adding 

short-circuit or open-circuit faults of electrical equipment lines, mechanical bearing 

wear, and changing parameter values can simulate the consequences of faults. 

In order to simulate the dynamic behavior of the device, the digital twin can also 

add parts and parameters of commonly used electromechanical equipment. These parts 

and their parameters can be found in the general commercial software product library. 

If there is a lack of parameters, commercial software can also be used to automatically 

adjust these parameter values so that the parameters generated by the simulation model 
match the measured data of the physical entity. After the simulation of each function of 

the device is completed, the digital twin is "assembled" into a complete device to 

achieve the effect of fully matching the physical entity. The data obtained through 

simulation can be used as reference data for equipment operation, as well as reference 

data for realizing fault prediction and diagnosis, as well as characteristic values of fault 

prediction and diagnosis. In order to improve the effect, simulation scenarios and times 

can be added to the cloud computer layer. The more times, the closer the simulation 

effect is to reality. 

The simulation results are used to extract training data for machine learning 

algorithm. With the development of machine learning, deep machine learning has been 

gradually promoted, and many algorithms to solve prediction problems have also been 

produced, such as: dynamic Bayesian network graph model, particle filter inference 
algorithm to estimate the state and parameters of equipment at the same time, and 

Gaussian particle filter, etc. Algorithm for reasoning verification [10] and other means 

of multi-parameters and models, prediction algorithms, artificial intelligence, etc. to 

realize the operation and interaction between physical entities and digital models to 

complete equipment failure prediction tasks, but different algorithms have different 

requirements for training data. For the fault prediction and diagnosis data, the training 

data is scarce, and the data needs to be extracted through simulation. In order to reduce 

the dependence of the prediction on the training data, the Markov model of deep 

learning is selected, which does not need to use too much prior knowledge. The deep 

learning method can be used to adaptively find the pattern characteristics between the 

input trend data and the trend data to improve the prediction accuracy. Because the 
system adopts a side-cloud collaborative framework, utilizes the computing and storage 

capabilities of cloud computing, and adopts different models and algorithms for 

different devices and components, effectively improving the accuracy of fault 

prediction. Through model training, equipment failure prediction and diagnosis 

characteristic values are obtained, which creates conditions for equipment failure 

prediction and diagnosis. 

4.6. Step 5: Equipment Failure Prediction and Diagnosis 

Equipment failure prediction and diagnosis can be based on a data-driven model. The 

common types of prediction algorithms in the data-driven model include supervised 
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learning and unsupervised learning. Supervised learning methods include decision trees, 

random forests, support vector machines, traditional neural networks and deep learning; 

unsupervised learning methods include kernel density estimation, k-means clustering 
and principal component analysis. Samir K summarized these methods in Ref. [11] and 

pointed out that decision trees need to use past experience data and there is overfitting; 

although random forest has improved decision trees, it is faster than support vector 

machines in training speed; Bayesian networks require prior knowledge, and the 

process of learning unknown structures is complicated; although the naive Bayesian 

algorithm is simple and requires less training data, it needs to assume that the data 

attributes are independent of each other, it also has pre-probability, and has high 

requirements for the input data format. The result of the change based on the feature 

combination cannot be processed, etc. Chen [12] studied the application of deep 

learning in equipment failure prediction and diagnosis, and proposed that deep learning 

can discover more hidden knowledge in the process of feature extraction of hierarchical 
structure, and has strong adaptability. 

Troubleshooting. The digital twin fault diagnosis mode can be carried out 

according to various operating parameters and fault diagnosis decision-making modes 

and algorithms of wind turbines. For example: it can be carried out based on electrical 

signals, and a successful diagnosis of motor faults has been carried out [13]; Kia et al. 

[14] proposed using the digital twin model to study the fault of the motor drive system 

including the gearbox. The correlation between the current signal and the gearbox 

failure was obtained and verified by data analysis. These analysis and calculations can 

be done in the edge node server, or in the background cloud computing platform. After 

the results are obtained, they are sent back to the digital simulation equipment for 

simulation verification and the simulation results are verified. If the fault is resolved 

smoothly, it means that the solution is feasible, and then pre-maintain the physical 
entity to ensure the normal operation of the physical entity. On the contrary, the 

simulation results are fed back to the knowledge base and re-analyzed to find the root 

cause of the failure. This can not only maintain the existing equipment but also provide 

reference data for equipment upgrades. 

For example: blade fault feature analysis and diagnosis under the digital blade, the 

digital blade simulation operation data can be compared with the actual collected data, 

if there is a difference in the data, then the uploaded inspection data can be used. The 

cloud computing platform uses data mining algorithms (such as random forest, 

K-nearest neighbors, AdaBoost, Naive Bayes to diagnose blade icing faults [15]), 

analyze and judge the fault, evaluate the damage condition of the blade, and obtain the 

auxiliary report of the fan blade loss. This front-end collects image data and transmits it 
to the back-end analysis of the edge-cloud collaborative mode, which can eliminate the 

differences in the manual inspection process, make each data more accurate and 

traceable to each inspection. Constructing a complete database for wind turbine 

inspections, realizing fault feature analysis and diagnosis, and establishing a digital 

foundation for equipment failure and life prediction. 

The equipment operation and maintenance based on the digital twin-driven and 

edge collaborative environment has strong edge node computing and data center 

computing capabilities. Therefore, for the fault prediction and diagnosis of complex 

electromechanical equipment such as wind turbines, the model or algorithm can be 

based on the equipment zero Component features and simulation results are constantly 

adjusted without being stuck to a certain algorithm. This is the advantage of edge cloud 

architecture for equipment operation and maintenance. 
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4.7. Step 6: Equipment Operation and Maintenance 

4.7.1. Prediction of Remaining Life of Equipment 

Equipment remaining service life (RUL) prediction and maintenance plan formulation 
and decision-making. With the help of digital twin technology, a model can be 

developed to estimate the RUL of the device, and the model can perform the estimation 

based on the time evolution or statistical properties of the condition index value. For 

example: there is a model that fits the time evolution of the status indicator and predicts 

how long it will take before the status indicator crosses a certain threshold indicating a 

fault condition. The model compares the time evolution of the status indicator with the 

measured or simulated time series of the system from operation to failure. The model 

can calculate the time when the current equipment is most likely to fail. In order to 

solve the uncertainty of the prediction model, the probability distribution of the RUL of 

the tested equipment can be provided. After determining possible condition indicators, 

a model algorithm design for RUL prediction can be developed. 
DT technology has good scalability. On the one hand, it can meet the equipment 

service life predictions provided by different equipment suppliers of wind farms. It can 

be accessed during the entire equipment service life. The historical data of all online 

equipment during use can be updated and saved synchronously to ensure that the data 

can be traced back to the equipment. It provides real-time data comparison for the 

normal operation of the equipment and discovers the hidden dangers of the equipment 

in time; on the other hand, the data accumulated by the equipment operation of 

different manufacturers can be used for reference when making life expectancy and be 

shared by all node enterprises in the chain. 

4.7.2. Maintenance Plan Formulation and Decision 

Driven by the digital twin, the system operates synchronously according to the virtual 

and real data input from the outside, and obtains equipment evaluation, fault prediction 
and maintenance verification data. The purpose of the probabilistic digital twin model 

is to incorporate decision-making risk analysis, and will add a layer of probabilistic 

digital twin driving model to the existing digital twin model, as shown in figure 6. 

 

Figure 6. Probabilistic digital twin. 
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The probabilistic digital twin drive model is divided into four layers. The first layer 

is the physical world, namely the equipment operating environment, physical 

equipment or systems, auxiliary equipment, etc. In the operation and maintenance of 
the wind turbine, in addition to some equipment on the wind turbine site, it should also 

include Computers, network equipment, sensor equipment, node servers, etc. The 

second layer is the digital twin layer, which mainly includes the system/physical 

digitized model system, data interface equipment, system display equipment, etc. The 

third layer is the probabilistic model of probabilistic digital twins, which mainly 

include equipment or system degradation and failure models, logic and relationship 

models, and proxy models. The fourth layer is the decision-making scenario layer, 

including various decision-making models, expert libraries, equipment procurement 

knowledge bases, risk analysis models, etc. 

5. Concluding Remarks 

Aiming at the difficulty in daily operation and maintenance of wind turbines in wind 

farms, a wind turbine operation and maintenance framework based on digital twins and 

edge clouds is proposed. The main components of the terminal data source layer, the 

edge computing node layer and the public cloud/private cloud that constitute the 

edge-cloud collaboration framework are described. It is proposed to use edge-cloud 

collaboration technology to build an operation and maintenance platform for wind 

turbines on site, and to unify real-time measurement and control of wind turbines. The 

edge computing end is responsible for the daily operation and maintenance data 

processing of wind turbines, and the background cloud computing is responsible for the 

data storage and data analysis of all wind farms, correcting fault prediction and 

diagnosis modes, and downloading the results to the edge computing node. The 
application of digital twin drive mode is proposed to predict and diagnose faults in the 

operation and maintenance of wind turbine equipment. It states the digital modeling 

method and iterative measures, failure prediction mode, failure feature analysis and 

diagnosis mode, life prediction mode and algorithm of wind turbines. The strategy of 

making equipment maintenance plan and decision based on probabilistic digital twin 

model is introduced. The application of digital twin technology has just started, and 

technologies such as equipment operation and maintenance modes, algorithms, and 

modeling methods driven by digital twins need to be further developed and improved. 
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