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Abstract. Alzheimer’s disease (AD) has become a major issue around world, 

including China. The two major challenges for AD are the difficulty in early 

detection and poor treatment outcomes. Over the past decades, artificial 

intelligence  (AI) was more and more widely used in the prevention, diagnosis and 

treatment of AD, which might be helpful to deal with the aging of population in 

China. Here, after a systematic literature searching on three English databases 

(MEDLINE, EMBASE, the Cochrane library), we briefly reviewed recent progress 

on the utilization of AI in the susceptibility analysis, diagnosis and management of 

AD. However, it is still in its infancy. More researches should be performed to 

improve the prognosis of patients with AD in the future. 
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1. Introduction 

With more than 176 million people aged ≥65 by the end of 2019, China has the largest 

elderly population in the world [1]. The incidence and prevalence of dementia is 

increasing with age. It was reported that Alzheimer’s disease (AD) and other dementia 

were the 8th leading cause of mortality, years of life lost (YLLs) in China in 2017 [2]. 

Among the dementia patients, AD is the most common form, accounting for 60%-80% 

of cases [3]. The incidence of AD in China was calculated to be 0.04, and increased 

significantly from 404 per 100,000 people in 2007 to 624 per 10,000 people in 2014 [4]. 

In addition, the AD-related expenses were evaluated to be from about 91 billion RMB 

in 2010 to 332 billion in 2050 in China [5]. Thus, it is urgent to improve the method of 

predicting, diagnosis and treatment for AD patients. 

Currently, the particular challenges for AD diagnosis and management were the 
lack of early diagnostic methods and effective therapy drugs. At the same time, the 

high proportion of failure in clinical trials for AD treatment had caused the decline in 
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business investment by some drugs manufacture enterprise [6]. From 2002 to 2012, 

only one drug, memantine, was authorized in AD treatment, although more than 400 

potential drugs for AD were conducted in clinic [7]. Fortunately, progress in genomics, 
proteomics and medical imaging examination, such as magnetic resonance imaging 

(MRI), computed tomography (CT), and positron emission tomography (PET) and so 

on, holds promise for earlier diagnosis of AD and identifying candidate therapeutic 

targets in clinic [8]. However, processing such different kinds of massive data is very 

time consuming for doctors and researchers. Artificial intelligence (AI) technologies, 

including deep learning systems, might be promising approach for analyzing various 

kinds of data.  

Here, we performed a systematic literature searching on three English databases 

(MEDLINE, EMBASE, the Cochrane library) about application of AI in the predicting, 

diagnosis and treatment of AD. Then, the recent progress in the field of AI-aided AD 

predicting, diagnosis and treatment was briefly reviewed. 

2. AI-Aided AD Genetic Susceptibility Analysis 

One of the effective methods for early detection of AD patients is to identify 

population with high-risk. It was reported that risk factors for AD included age, metal 

exposure, traumatic brain injury, genetic risk factors, the immune system, 

mitochondrial function, air pollution, unhealthy life-style (e.g., smoking, alcohol 

drinking, lack of exercise, and exposure to greenery) and associated co-morbidities, 

including vascular disease and infection, etc. [9]. Among these factors for AD except 

for early-onset familial AD, genetic factors might account for about 70% of the causes 

[10, 11]. In addition, increasing evidence showed that most AD patients were caused 

by complicated interactions between a variety of genetic and environmental factors. 

However, analysis of large genetic data, including genetic variance, gene expression 

spectrum, gene-gene interactions, is time-consuming and laborious. Luckily, AI 
technologies, mainly machine learning, had been demonstrated to be convenient and 

powerful methods for such huge data processing. A critical review about the 

application of AI in the genetic analysis of AD was provided Mishra et al [12]. 

3. AI-Aided AD Diagnosis 

As mentioned above, one of the main challenges of AD was that it was difficult to 

detect in early stage before the appearance of significant memory loss and mental 

symptoms. At present, diagnosis of AD was mainly based on psychiatric and 

neurological symptoms, medical imaging examination, and the abnormal expression of 

biomarkers [13]. For example, up to now, the use of semi-quantitative approaches, 

including mini-mental state examination and Consortium to Establish a Registry for 

Alzheimer’s Disease, had been the main criteria of clinical diagnosis. However, the 
investigation of these scales was complicated and time-consuming. In recent years, 

machine learning methods had generated quantitative scores for whole slide images 

(WSIs) that were highly consistent with previous scores [14]. 

Some studies have employed convolutional neural networks (CNNs), which might 

classify images by recognizing and mapping a lot of features, to diagnose AD from 

MRI and PET results [15-17]. For example, Ding et al. performed CNNs of 
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InceptionV3 architecturea at fluorine 18 (18F) fluorodeoxyglucose (FDG) PET of the 

brain from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and got 82% 

specificity at 100% sensitivity, an average of 75.8 months prior to the final AD 
diagnosis [17]. Similarly, adopting automated segmentation of stained objects and a 

cloud-based interface, Tang et al found more than 70,000 plaque candidates from 43 

whole slide images (WSIs) to train and test CNNs. They showed that networks 

obtained 0.993 areas under the receiver operating characteristic and 0.743 precision 

recall curves, respectively [18]. 

In addition to CNNs, support vector machines (SVMs) had also been taken to 

analysis MRI images, sometimes combining MRI, and cognitive ability evaluation 

results to enhance the accuracy rate AD diagnosis [19-27]. For example, Klöppel et al. 

used SVMs to distinguish between structural MR scans from AD patients and elderly 

with normal cognitive function, in addition to distinguish between AD patients and 

frontotemporal lobar dementia suffers [20]. Moreover, in structural MRI images, SVMs 
successfully predicted progression from mild cognitive impairment (MCI), an early 

stage of AD, to AD, as well as separated healthy controls, patients with MCI and AD 

patients preferable to a combination of statistical methods and expert knowledge [21]. 

Moreover, combined use linear dynamic system and SVMs, Moradi et al integrated 

MRI images and cognitive assessment information to differentiate AD patients from 

healthy individuals [22]. Besides, Magnin et al. evaluated an automated method based 

on SVMs of whole-brain anatomical MRI from 16 AD patients and 22 healthy 

individuals, and got 96.6% mean specificity and 91.5% mean sensitivity, respectively 

[23]. Similarly to the work by Magnin et al, Gerardin et al. developed spherical 

harmonics (SPHARM) coefficients based on SVM, and showed that accuracy was 

superior to that of hippocampal volumetry [24]. 

A different approach, three-stage deep feature learning and fusion framework, was 
taken in another study, in which deep neural network was trained stage-wise and tested 

the proposed framework using ADNI data for AD diagnosis. They found that the 

method was superior to other state-of-the-art methods [28]. 

Meanwhile, several AI methods were used simultaneously in some investigations. 

Maj et al observed a combination of unsupervised and supervised machine learning 

methods to analyse correlation between AD and pattern of gene expression in different 

tissues and found that the Recurrent Neural Networks (RNN) was the most precise 

method for differentiating AD patients from healthy individuals [29]. Maroco et al 

performed a comparative analysis to compare seven non parametric classifiers, 

including Multilayer Perceptrons Neural Networks, Radial Basis Function Neural 

Networks, SVM, CART, CHAID and QUEST Classification Trees and Random 
Forests (RF) with three traditional classifiers, including Linear Discriminant Analysis 

(LDA), Quadratic Discriminant Analysis and Logistic Regression, in terms of overall 

classification accuracy, specificity, sensitivity, Area under the ROC curve and Press’Q, 

and found that RF and LDA were the best methods in AD diagnosis [30]. 

In addition to genomics and medical imaging data, AI technologies were also used 

to analyse other kind of data, such as proteomics. Using a classification method, called 

predictive analysis of microarrays, Ray et al. identified 18 signaling proteins, the serum 

concentration of which differentiated AD sufferers from healthy individuals with near 

90% accuracy [31]. Similarly, a radial basis function (RBF) network for feature 

selection (FSRBF) for both feature selection and classification established a smaller set 

of 9 proteins that distinguished AD patients from healthy individuals [32]. 
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4. AI-Aided AD Management 

It’s well known that AD is a chronic progressive neurodegenerative disease 

characterized by memory and other cognitive functions loss, resulting in reduction or 
loss in daily life activities. So far, almost all clinical trials showed that no 

pharmacological therapy could alter progression of the disease, despite continuous 

advances in exploring aspects of AD pathophysiology [33]. The possible factors 

contributing to this limitation included heterogeneity of the AD patients and lack of 

objective efficacy methods or predictive biomarkers of treatment [34-36]. Therefore, 

the directions of AD treatment in the future are new drug development and 

individualized treatment, namely Precision medicine (PM).  

4.1. New Drug Development 

Discovery and new understanding of disease pathogenesis is crucial for the novel 

treatment, as well as for diagnosis and prognosis. In oncology clinic, genomic materials 

were routinely sequenced to find and rank genomic biomarkers of cancer and 
therapeutic response [37, 38]. So, it’s reasonable to speculate that a similar strategy in 

precision oncology could also be applied to identify candidate therapeutic targets and 

enhance therapeutic efficacy in AD. However, PM often relies on big data as well as on 

bioinformatic analysis of large datasets [39]. Zhang et al. used co- regulation, 

clustering and Bayesian inference together to cope with transcriptomic data and 

identified groups of immune- related and microglial- specific genes which abnormally 

expressed in brain tissue [40]. Among them, the microglial protein TYROBP was an 

important regulatory protein. Interestingly, it played neuroprotective role in animal AD 

model [41, 42]. Taken together, these results suggested TYROBP as a novel candidate 

treatment target. 

4.2. Patient Stratification 

Diversity in symptoms and signs, disease progression, molecular mechanism and 
response to drug therapy usually existed among AD suffers. Thus, it is necessary to 

stratify patients in treatment. More recently, using unsupervised formal concept 

analysis (FCA), combined with the Knowledge Extraction and Management (KEM) 

environment, Hampel performed genome-wide analysis for biomarkers predicting 

treatment response in AD, and identified Blarcamesine (ANAVEX2-73), a selective 

sigma-1 receptor (SIGMAR1) agonist, as a predictor of treatment response [43]. 

Finally, AI, specifically natural language processing (NLP), may be employed to 

help fight AD stigma. For details, please refer to the review by Pilozzi et al. [44]. 

5. Conclusion 

In conclusion, AI technologies could more efficiently analysis large amounts of 

multidimensional data to provide further information into disease foundations, and to 
help with earlier screening, diagnosis, more accurate prognosis, patient stratification 

and development of new drugs, which is helpful to deal with the aging of population in 

Japan. However, it is still in the initial stage. More researches should be performed to 
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improve the diagnosis, treatment and prognosis of patients with AD in the future. First, 

most of the existing studies were retrospective or/ and small sample size. So, more 

clinic trials with larger sample sizes and well-designed, e.g., prospective, randomized, 
controlled, are required to improve the quality of the results. Second, with the new 

development of medical diagnosis and treatment technology, AI needs to combine with 

other new technologies or data, such as metabonomics, miRNA expression profile, and 

gut microbiota and so on. Last, considering the heterogeneity in AD patients, including 

different race in the world, it is important to further determine the role of the 

application of AI in the genetic susceptibility analysis, diagnosis and management of 

AD in Chinese population. 
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