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Abstract. With the development of deep convolutional neural network, recent 
research on single image super-resolution (SISR) has achieved great achievements. 
In particular, the networks, which fully utilize features, achieve a better performance. 
In this paper, we propose an image super-resolution dual features extraction network 
(SRDFN). Our method uses the dual features extraction blocks (DFBs) to extract 
and combine low-resolution features, with less noise but less detail, and high-
resolution features, with more detail but more noise. The output of DFB contains 
the advantages of low- and high-resolution features, with more detail and less noise. 
Moreover, due to that the number of DFB and channels can be set by weighting 
accuracy against size of model, SRDFN can be designed according to actual 
situation. The experimental results demonstrate that the proposed SRDFN performs 
well in comparison with the state-of-the-art methods.  
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1. Introduction 

SISR aims to recover a high-resolution (HR) image from its low-resolution (LR) image. 
It has a wide range of applications in real life, such as monitoring [1], medical image 
processing [2], as well as in the image compression and transmission [3].  

Since Dong et al. [4] firstly introduced the Convolutional Neural Network (CNN) to 
the super-resolution (SR), its superior performance highlights that leaning-based 
methods have more advantages than traditional methods such as interpolation-based 
methods [5-7] and reconstruction-based methods [8, 9]. Then the learning-based method 
[10-12] generally turns into mainstream on SISR. Current deep learning methods for SR 
can be divided into two main frameworks based on employed upsampling operations and 
their locations in the model: pre-upsampling and post-upsampling framework [13]. They 
are shown in figure 1. 

 
Figure 1. Pre-upsampling and post-upsamping framework. 
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Pre-upsampling framework was first adopted by [4]. For this framework, the 
operation of upsample is at the front of the CNN. Therefore, the network can not directly 
extract features from LR images. References [14-16], which adopt the pre-upsampling 
framework, utilize an interpolated image as the input. Therefore, these networks need to 
extract HR features from the interpolated image. In fact, these networks learn a nonlinear 
mapping between interpolated image and HR image. This framework reduces the 
difficulty of learning by avoiding learning the upsampling operation. However, the 
operation of interpolating will inevitably amplify the noise and introduce blurring. To 
solve this problem, the post-upsampling framework was proposed. In contrast, references 
[17-20] need to learn the upsampling operation at the end of their networks and the input 
of these networks is a LR image. These networks can directly extract LR features from 
the input image for image super-resolution. Due to the main calculation cost of this 
framework is on low-dimensional space, the computation complexity is greatly reduced.  

To utilize the advantages of both, we propose a novel network for image SR, namely 
the super-resolution dual features extraction network (SRDFN). The proposed SRDFN 
utilizes the dual features extraction block (DFB) to extract the LR and HR features and 
combine the advantages of both. The experimental results indicate the advantages of 
SRDFN against other state-of-the-art methods. 

In summary, the main contributions of our work are as follows: 
 Proposed DFB not only enriches the feature maps via up-and-down sampling 

layers, but also combines the LR and HR features. The DFB utilizes low-resolution 
feature extraction path (LRFP) to extract LR features and high-resolution feature 
extraction path (HRFP) to extract HR features. Then using a 1 × 1 convolutional layer 
[21] to combine LR and HR features. The output of DFB contains the advantages of both 
features. 

 The size of our network SRDFN is changeable, which means the network can 
be a trade-off between size and accuracy. Therefore, the network can be customized by 
increasing or decreasing the amount of DFB and the number of channels according to 
the actual situation. 

2. Related Works 

Deep learning has shown its superior performance in SISR. Dong et al. [4] firstly 
introduced the CNN in SISR to learn a nonlinear mapping between LR and HR. Kim et 
al. [22] adopted the residual architecture to get the better SR results. However, these two 
networks use the interpolated images as the input of networks, which leads to heavier 
computation time and memory. Moreover, the interpolated images amplify the noise 
from the LR images and bring the noise to the SR results. Rather than using an 
interpolated image as an input, EDSR [17] utilizes a LR image as an input. This network 
improve the computational efficiency by making the most cost of computation on the 
low-dimension space. Using the LR image as the input, there is no noise introduced to 
the networks. Therefore, their networks get the better SR results. However, they only use 
the LR or HR features to implement SR. Ke et al. [23] and Nakarmi et al. [24] make use 
of multi-scale feature extraction from LR and HR images to improve the quality of 
reconstructed images. To utilize the relationships of LR and HR features, DBPN [25] 
and SRFBN [26] use the iterative up-and-down sampling to fully address the mutual 
dependencies of LR and HR images. These networks utilize deep concatenation of the 
HR features from all up-sampling stages to reconstruct the HR images. DBPN [25] and 
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SRFBN [26] improve the SR results by exploiting the sufficient features and the 
relationships of LR and HR features. They focus on how to extract HR features and 
project them back to the LR spaces. Unlike [25, 26], we pay more attention to combine 
the LR and HR features. We propose SRDFN to mine the deep relationships of LR and 
HR features and combine the LR and HR features. 

3. Image Super-resolution Based on Dual Features Extraction Network 

3.1. Image Super-resolution Dual Features Extraction Network 

As shown in figure 2, SRDFN includes an LR feature extraction block (LRFB), N dual 
features extraction blocks (DFBs), and a reconstruction block (RB). And there is a global 
residual skip connection from an upsampled image to the output of the RB. Thus, the 
output of the RB should be a residual image. In order to read this paper clearly, we 
summarize some acronyms in table 1. 

Firstly, the LRFB uses a 3 × 3 convolutional layer with 4 × m filters and a 1 × 1 
convolutional layer with m filters to extend the LR features from a LR image. Suppose 
an LR input 𝐼௅ோ for the LRFB, then the input of the first DFB 𝐷௜௡ଵ , also the output of the 
LRFB, can be obtained by: 𝐷௜௡ଵ = 𝑓௅ோி஻(𝐼௅ோ)                                           (1) 

where 𝑓௅ோி஻ refers to extract features from 𝐼௅ோ. 

 
Figure 2. Overall architecture of SRDFN. 

Table 1. The summary of acronyms. 

Acronym Description 
LRFB low-resolution feature extraction block 
DFB dual features extraction block 
RB reconstruction block 
LRFP low-resolution feature extraction path 
HRFP high-resolution feature extraction path 

Then the DFB extracts and combines the LR and HR features. The input of the n-th 
DFB can be denoted as 𝐷௜௡ଵ , the output of the n-th DFB can be denoted as 𝐷௢௨௧௡ . Then the 
mathematical formulation of DFB is: 𝐷௢௨௧௡ = 𝑓஽ி஻(𝐷௜௡௡ )                                              (2) 

Upsample

HR

LRFB the group of DFB RB
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where 𝑓஽ி஻ represents to the operations of the DFB. The specific details are in Section 
3.2. 

After that, the RB uses the features extracted and combined by the DFB to 
reconstruct a residual image. The RB consists of a k × k deconvolutional layer that has 
m filters and a 3 × 3 convolutional layer that has 3 filters. Then the output of RB 𝑅௢௨௧ is 
obtained by: 𝑅௢௨௧ = 𝑓ோ஻(𝐷௢௨௧ே )                                                      (3) 

where 𝐷௢௨௧ே  refers to the output of the N-th DFB and 𝑓ோ஻ denotes the operations of RB. 
In the end, we can obtain the output image 𝐼ௌோ: 𝐼ௌோ = 𝑅௢௨௧ ൅ 𝑓௎௉(𝐼௅ோ)                                                         (4) 

where 𝑓௎௉ represents to the operations of upsampling. 

3.2. Dual Features Extraction Block 

As shown in figure 3, DFB is constructed by LR feature extraction path (LRFP) and HR 
feature extraction path (HRFP). The DFB receives the information 𝐷௜௡௡  to extract the LR 
features and HR features, and then combine two kinds of features as the input of the next 
block to extract more powerful information for reconstruction. Due to the input of LRFP 
and HRFP is both the 𝐷௜௡௡ , we can consider the LRFP and HRFP are parallel. 

The LRFP uses a 3 × 3 convolutional layer with m filters. The LR features of the n-
th DFB 𝐿௡ can be obtained by 𝐿௡ = 𝑓௅ோி௉(𝐷௜௡௡ )                                                      (5) 

where 𝑓୐ୖ୊୔ denotes the operations of the LRFP. 

 
Figure 3. DFB. 

Similar to LRFP, the HRFP consists of a k × k deconvolutional layer that has m 
filters and a 3 × 3 convolutional layer that has m filters. The HR features of the n-th DFB 𝐻௡ can be obtained by: 𝐻௡ = 𝑓ୌୖ୊୔(𝐷௜௡௡ )                                                       (6) 

where 𝑓ୌୖ୊୔ denotes the operations of the HRFP. 
The 𝐿௡ and 𝐻௡ are contacted as the input of a 1 × 1 convolutional layer with m 

filters. The operation of contact is to place 𝐻௡ after 𝐿௡. Then the output of n-th DFB 𝐷௢௨௧௡  is obtained by 
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𝐷௢௨௧௡ = 𝑓஼(|𝐿௡, 𝐻௡|)                                                         (7) 

where 𝑓େ denotes the operations of combination using a 1 × 1 convolutional layer with 
m filters. 

4. Experimental Results 

4.1. Training Details 

DIV2K [27] is selected as our training dataset. To fully exploit the training dataset, we 
use the method as [17] does. We set the patch size according to the scale factor. The 
definite values of them are listed in table 2. We used two metrics, peak signal-to-noise 
ratio (PSNR) and structure similarity index (SSIM) [28], to evaluate the performance of 
our networks. As for the testing dataset, we used four widely used benchmark datasets: 
Set5 [29], Set14 [30], B100 [31] and Manga109 [32]. Due to that people are more 
sensitive to the luminance component, we only evaluate them on the luminance channel. 

We adopt the method in [33] to initial the parameters of our networks and use 
ADAM optimizer [34] to update the parameters with an initial learning rate 0.0001. Our 
experiments are on NVIDIA TITAN XP GPU with Pytorch [35] framework. 

Table 2. The setting of patch size. 

Scale ×2 ×3 ×4
Patch Size 60 50 40

4.2. Implementation Details 

We select PReLU [33] as the activation function after all convolutional layers and 
deconvolutional layers apart from the convolutional layer of the RB.We use L1 loss as 
our loss function and bicubic as upsampling method. The value of m mentioned in 
Section 3 is set 32 for SRDFN-S, a lightweight network, and 64 for SRDFN. About the 
value of N, it is set 8 for SRDFN-S and 16 for SRDFN. As for the value of k, we use 
diverse k for different scale factors. For ×2 scale factor, we set k = 6. Then to satisfy the 
scale factor, the striding and padding are both 2. As for ×3 scale factor, we set k = 7. To 
enlarge 120 the image three times, the striding should be 3 and padding should be 2. And 
for ×4 scale factor, we set k = 8. Similarly, the striding is set 4 and the padding is set 2. 

4.3. Comparison with State-of-the-Art Methods 

We select two networks, SRDFN-S, a lightweight network, and SRDFN, a network with 
a large number of parameters, to compare with the state-of-the-art methods. To improve 
the performance of SRDFN, we determined to use the self-ensemble [17] method on 
SRDFN (denoted as SRDFN+). We consider the state-of-the-art methods in this 
experiment including SRCNN [4], VDSR [22], DRRN [14], MemNet [15], EDSR [17] 
and SRFBN [26]. 

As shown in figure 4, SRDFN-S attains the best results among the lightweight 
networks. For the large networks, SRDFN and SRDFN+ can achieve great results with 
fewer parameters. The parameters of our proposed SRDFN is only 12.5% of EDSR [17] 
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for the scale factor ×2. And the quantitative valuation results of our proposed models 
(SRDFN-S, SRDFN, SRDFN+) are listed in table 3. 

 
Figure 4. Performance on Set5 and number of parameters. Reds are our proposed network. 

Table 3. Quantitative evaluation results comparing with the state-of-the-art methods on the standard 
benchmark datasets (PSNR(dB)/SSIM). The best performance is shown in red and the second-best performance 
is shown in blue. 

Model Scale Set5 Set14 B100 Manga109 
Bicubic 2 33.66/0.9299 30.24/0.8688 29.56/0.8431 30.30/0.9339 
SRCNN [4] 2 36.66/0.9542 32.45/0.9067 31.36/0.8879 35.60/0.9663 
VDSR [22] 2 37.53/0.9590 33.05/0.9130 31.90/0.8960 37.22/0.9750 
DRRN [14] 2 37.74/0.9591 33.23/0.9136 32.05/0.8973 37.60/0.9736 
MemNet [15] 2 37.78/0.9597 33.28/0.9142 32.08/0.8978 37.72/0.9740 
SRDFN-S (ours) 2 37.82/0.9599 33.45/0.9163 32.04/0.8979 38.09/0.9759 
EDSR [17] 2 38.11/0.9602 33.92/0.9195 32.32/0.9013 39.10/0.9773 
SRFBN [26] 2 38.11/0.9609 33.82/0.9196 32.29/0.9010 39.08/0.9779 
SRDFN (ours) 2 38.08/0.9607 33.79/0.9195 32.24/0.9004 38.66/0.9771 
SRDFN+ (ours) 2 38.14/0.9610 33.89/0.9203 32.28/0.9009 38.87/0.9777 
Bicubic 3 30.39/0.8682 27.55/0.7742 27.21/0.7385 26.95/0.8556 
SRCNN [4] 3 32.75/0.9090 29.30/0.8215 28.41/0.7863 30.48/0.9117 
VDSR [22] 3 33.67/0.9210 29.78/0.8320 28.83/0.7990 32.01/0.9340 
DRRN [14] 3 34.03/0.9244 29.96/0.8349 28.95/0.8004 32.42/0.9359 
MemNet [15] 3 34.09/0.9248 30.00/0.8350 28.96/0.8001 32.51/0.9369 
SRDFN-S (ours) 3 34.28/0.9260 30.24/0.8405 29.01/0.8031 33.21/0.9422 
EDSR [17] 3 34.65/0.9280 30.52/0.8462 29.25/0.8093 34.17/0.9476 
SRFBN [26] 3 34.70/0.9292 30.51/0.8461 29.24/0.8084 34.18/0.9481 
SRDFN (ours) 3 34.63/0.9289 30.51/0.8459 29.23/0.8087 33.81/0.9464 
SRDFN+ (ours) 3 34.73/0.9296 30.59/0.8469 29.30/0.8090 34.09/0.9482 
Bicubic 4 28.42/0.8104 26.00/0.7027 25.96/0.6675 24.89/0.7866 
SRCNN [4] 4 30.48/0.8628 27.50/0.7513 26.90/0.7101 27.58/0.8555 
VDSR [22] 4 31.35/0.8830 28.02/0.7680 27.29/0.7260 28.83/0.8870 
DRRN [14] 4 31.68/0.8888 28.21/0.7721 27.38/0.7284 29.18/0.8914 
MemNet [15] 4 31.74/0.8893 28.26/0.7723 27.40/0.7281 29.42/0.8942 
SRDFN-S (ours) 4 32.06/0.8937 28.51/0.7802 27.51/0.7340 30.21/0.9052 
EDSR [17] 4 32.46/0.8968 28.80/0.7876 27.71/0.7420 31.02/0.9148 
SRFBN [26] 4 32.47/0.8983 28.81/0.7868 27.72/0.7409 31.15/0.9160 
SRDFN (ours) 4 32.32/0.8969 28.76/0.7857 27.68/0.7397 30.82/0.9128 
SRDFN+ (ours) 4 32.44/0.8981 28.84/0.7872 27.74/0.7410 31.06/0.9150 
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We show SR results in figure 5. We can see that our proposed network can produce 
clear images. Particularly in the SR results of the ‘ppt3’ from Set14, the SR results of 
SRDFN is very close to the ground truth. For the SR results of the ‘butterfly’ from Set5, 
SRCNN [4], VDSR [22], DRRN [14], and MemNet [15] fail to recover the shape of the 
image. However, the result of our SRDFN is more close to the ground truth. For the 
results of ‘302008’ from B100, the results of SRCNN [4], VDSR [22], and DRRN [14] 
is too blurry in the central part. The results of SRDFN and SRDFN-S are clearer than the 
result of MemNet [15]. As for the ‘GarakutayaManta’ from Manga109, SRDFN 
recovered the first word, however, other models failed to recover it. 

 
Figure 5. Visual results of our models with other works for scale factor ×4. 

4.4. Network Analysis 

4.4.1. The Efficiency of DFB 

To highlight the effectiveness of DFB, we design two other networks to compare with 
SRDFN-S. One utilizes only LRFP to extract LR features and the other uses only HRFP 
to extract HR features. However, the channel factor m of both networks are set 32 and 
the factor N of both networks are set 8. From table 4, we can see that the model, using 
the DFB, gets the best PSNR. The results demonstrate that our proposed DFB can indeed 
combine the two kinds of features to improve the image quality. 

Table 4. The PSNR/SSIM of SR results provided by model using LRFP, HRFP and DFB for scale ×2. 

DataSet LRFP HRFP DFB 
Set5 [29] 37.38/0.9583 37.72/0.9596 37.82/0.9599 
Set14 [30] 33.04/0.9124 33.37/0.9157 33.45/0.9163 

We can also get this conclusion from figure 6. We can see that the SR result, 
provided by model, which use LRFP, is blurry at the high frequency part. This is caused 
by that LRFP only extracts LR features. In contrast, using HRFP can recover a sharper 
result than using LRFP. However, the result provided by the model, using HRFP, is still 
blurry, while DFB combines LR features and HR features to get a clearest result. 
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Figure 6. Visual results of LRFP, HRFP and DFB for scale ×2. 

To further explain that how DFB to combine the two kinds of features, we save some 
features of DFB. LR_feature in figure 7 is the 1௦௧ channel output of the LRFP in the 6௧௛  
DFB, HR_feature in figure 7 is the 1௦௧ channel output of the HRFP in the 6௧௛   DFB, and 
out_feature in figure 7 is the 1௦௧ channel output of the 6௧௛  DFB. We can observe from 
figure 7 that there are more details in HR_feature than in LR_feature, particularly in an 
eyelash. As we said in Section 2, there are some noises amplified in HR_feature, but in 
the meantime, the details are also amplified, which can improve the image quality. 
However, 158 LR_feature is smoother than HR_feature, because there is less noise in 
LR_feature. At last, we can see that there are more details than LR_feature and less noise 
than HR_feature in out_feature. 

 
Figure 7. Features in the 6௧௛ DFB of SRDFN-S. 

4.4.2. The Trade-off of the Size and Accuracy 

Our network can change the channel factor m or the factor N to determine the size of 
model. In this section, we set various values of them to generate 4 different networks. 
They are named according to SRDFN_N_m. For example, the channel factor m is 32 and 
the factor N is 8 for SRDFN_8_32. The convergence comparison of SRDFN_8_32, 
SRDFN_16_32, SRDFN_8_64, and SRDFN_16_64 is shown in figure 6. It can be 
observed from figure 8, that SRDFN_8_64 (the green one in figure 8) is higher than 
others in the early epoch. As the epoch increases, SRDFN_16_64 (the red one in figure 
8) is generally catch up and pass the others. SRDFN_8_32 (the yellow one in figure 8) 
converges very quickly, but its result is lower than others. We can see that increasing m 
or N both improve the image quality, thus the DFB is efficient for image super-resolution. 

HR
PSNR/SSIM

SRDFN-LR-S
33.99/0.9743

SRDFN-HR-S
34.79/0.9765

SRDFN-S
34.90/0.9769
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Figure 8. Convergence comparison with SRDFN_8_32, SRDFN_16_32, SRDFN_8_64, and SRDFN_16_64 
on the Set5 for scale ×2. 

It is obvious from table 5 that increasing channels is better than increasing the 
amount of DFB although both of them can improve performance. However, increasing 
channels will increase more parameters 172 than increasing the number of DFB. Thus, 
for different situations, we can design different networks by weighting the size of model 
and accuracy. 

Table 5. Average PSNR values on Set5 for scale ×2. 

Model Parameters (M) PSNR (dB) 
SRDFN_8_32 0.69 37.82 
SRDFN_16_32 1.34 37.89 
SRDFN_8_64 2.76 38.00 
SRDFN_16_64 5.36 38.08 

5. Conclusion 

In this paper, we propose a new method to realize super-resolution. By extract and 
combine the LR features and HR features, we get abundant features to reconstruct an HR 
image. HR features provide more details for reconstructing images, on the other hand, 
LR features are smoother than HR features. We utilize the advantages of both to 
reconstruct images and get a good performance. The DFB accomplishes the task 
excellently, enriching the feature maps and combining LR and HR features. Besides, our 
proposed network SRDFN can balance the size and accuracy according to the actual 
situation. Extensive experiments show that our proposed network could reconstruct 
images efficiently. 
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