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Abstract. To explore the automatic classification method of Quaternary lithology 

in vegetation covered areas is significantly helpful to improve the efficiency of 
Quaternary lithology mapping. Due to the vegetation cover and human 

modification effects, the traditional lithology identification methods based on 

image spectra and textures are often challenging to be effective. This paper uses 
multi-source remote sensing data such as OLI, TIRS, and ASTER GDEM to 

extract multiple types of spectral (SPEC), textural (TEX), topographic (TOPO), 

geothermal (TEM), and vegetation (VEG) based on principal component transform, 
gray co-occurrence matrix, topographic factor calculation, thermal radiation 

transport model and vegetation index in the Quaternary distribution area of Viet 

Chi, Vietnam. Remote sensing features were selected and combined to form 16 
kinds of classification datasets. The lithological units was automatically classified 

using the random forest method, The method’s accuracy was evaluated to study 

the effectiveness of multi-type remote sensing features on the automatic 
classification of Quaternary lithology in vegetation cover area. The results show 

that the geothermal, textural, and topographic features can effectively improve the 

lithological classification accuracy, and the overall classification accuracy is 
improved by 0.32%, 0.87%, and 2.25%, respectively, compared with the use of 

spectral data alone. Among the 16 classification datasets constructed, the dataset 

combining spectral, textural, topographic, and geothermal features (SPEC+ TEX+ 
TOPO+ TEM) obtained the highest automatic lithology classification accuracy of 

80.99%. This study can provide a technical idea for rapid differentiation of 

regional Quaternary surface sediment lithologies. 
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1. Introduction 

Quaternary sediments are geological bodies that are very closely related to human 

activities and are closely associated with human survival and development [1]. The 

geological lithological classification of Quaternary sediments is mainly classified and 

named according to the material grain size [1]. Traditional Quaternary lithology 

mapping is based on the grid sampling survey combined with an interpolation mapping 

method [2], which is often time-consuming and labor-intensive. In this paper, we 

synthesize multi-remote sensing features for the quaternary lithology image 

classification method to provide an objective reference for carrying out quaternary 

investigation work, and at the same time, improve quaternary lithology mapping 

efficiency. 

The spectral and textural information of remote sensing data is the most basic 

information applied to lithology classification. The spectral information of remote 

sensing data can reflect the combined characteristic differences of selective absorption, 

reflection, transmission, and scattering of different types of minerals and rocks on the 

surface to different wavelengths of incident light [3], which in turn can be used to 

identify mineral and rock categories. Medium spatial resolution sub-remote sensing 

data (MIRD), such as TM, ETM+ OLI, and ASTER, cover the diagnostic spectral 

intervals of several types of minerals such as carbonate minerals, clay minerals, and 

iron oxide minerals [3], and have been widely used for rock and mineral identification. 

Remote sensing image texture information reflects the spatial variation of radiometric 

brightness values in the image and is also an important feature used to identify objects. 

With the use of high spatial resolution remote sensing data (high-resolution data) such 

as SPOT, QuickBird, WorldView, and GF series, the image texture features can better 

show the linear tectonic features such as laminations, joints, and fractures in rock strata 

and the contact relationship between lithological units [4-5], and the improvement of 

image’s spatial resolution is also the most effective way to solve the mixed pixels 

phenomenon [4]. However, in vegetation-covered areas, rocks and minerals are 

covered by vegetation, and it is difficult to rely solely on spectral and textural 

information for lithology identification. 

Remotely sensed topographic information provides a quantitative description of 

geomorphic features [6], while the Quaternary lithology is closely related to the type of 

geomorphogenesis [7]. Meanwhile, topographic information can reflect the erosion and 

weathering differences of different lithologies [8], which can assist in the lithological 

classification of vegetation cover areas. Topographic indices have been widely used in 

remote sensing lithology classification [6,9]. Othman and Gloaguen combined ASTER 

spectral, texture, and topographic information for lithology automatic classification and 

improved the accuracy(73%-79.3%) using topographic surface index (SI) [9]. Grebby 

et al. used airborne LiDAR data to obtain DTM (Digital Terrain Model) data and 

extracted slope, curvature, surface roughness (SR), and height integral (HI) topographic 

indices for lithology classification, obtaining an overall classification accuracy of 

65.4% [10]. Most of these studies have focused on lithology classification in bedrock 

mountains with large topographic relief, and no studies have attempted to classify 

lithology in the relatively gently topographic Quaternary regions using topographic 

indices. 

Surface vegetation cover remains one of the main factors limiting lithological 

mapping [11]. The reason is that vegetation cover as low as 10-30% (e.g., green grass, 

hay, and lichen) can be sufficient to mask the spectral features of rocks [12]. To solve 
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the problem of remote sensing lithology identification in the vegetation densely 

covered areas, an indirect approach is exploring the geobotanical (geological) 

relationship between surface vegetation and underlying lithology [13], i.e., to establish 

correlations between lithology and vegetation types, and then to achieve lithology 

image classification in vegetation cover areas by identifying the spectral features of 

specific types of vegetation [14]. Grebby et al. were instrumental in validating Cyprus 

based on the correlation between vegetation types and lithological units in central 

Cyprus and completed the lithological classification of vegetation cover areas using 

airborne hyperspectral data [11]. Amaral et al. verified the correspondence between 

Quaternary lithology and vegetation types in the Brazilian tropical rainforest region and 

completed the classification of vegetation types and then lithological image 

classification using hyperspectral data [15]. 

The purpose of this study is to verify the validity of remote sensing features such 

as spectral, texture, topography, surface temperature, and vegetation for the 

classification of Quaternary lithology in the vegetation cover area and to provide a new 

way of thinking for carrying out image classification studies of Quaternary lithology in 

the vegetation cover area. 

2. Study Area and Data Sources 

The study area is located in Viet Chi, Vietnam, in a subtropical region with an average 

annual temperature above 24°C and abundant rainfall. The landform types in the study 

area are mainly plains and hills, with developed vegetation and large forest cover. The 

data used are OLI data (figure 1a), TIRS data, and DEM data (ASTER GDEM v2) 

collected on December 3, 2013. 

The stratigraphy of the study area contains Pleistocene-Holocene, and the specific 

lithological units contain Pleistocene gravels, Holocene sands, Holocene clays, and 

Holocene gravels, distributed as in figure 1b. 

 

(a) OLI image (432). 

 

(b) Lithological sketch. 

Figure 1. OLI image and Lithological sketch of the study area. 

3. Research Methodology 

In this study, based on OLI, TIRS, and DEM data, we extracted multi-type remote 

sensing features such as spectral, texture, topography, surface temperature, and 
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vegetation using principal component transform, grayscale co-occurrence matrix, 

terrain factor calculation, thermal radiation transfer model. vegetation index, and so on. 

We screened and combined these features to obtain a classification dataset of 16 

species. For these features, we used automatic lithology classification by using random 

forest method and evaluated the accuracy. Lastly, we compared and verified the 

effectiveness of remote sensing features such as spectral, texture, topography, surface 

temperature and vegetation on the classification of Quaternary lithology in vegetation 

covered areas. 

3.1. Feature Extraction 

3.1.1. Vegetation Index 

Vegetation indices extract vegetation features in the study area. Three vegetation 

indices were selected in this study: Normalized vegetation index (NDVI)reflects the 

green leaf content of vegetation leaves [16] and has a significant positive correlation 

with vegetation cover [17]; Greenness and short-wave infrared vegetation index 

(VIGS), this index response to the stress characteristics of vegetation to heavy metal 

elements [18]; Short-wave infrared normalized vegetation index (SWVI, SWIR-based 

normalized difference index); this responds to differences in vegetation foliar water 

content [19], which is related to vegetation type and growth status. 

VIGS = w1*(ρ(band3) - ρ(band4))/ (ρ(band3) + ρ(band4)) + w2*(ρ(band5) - 

ρ(band4))/ (ρ(band5) + ρ(band4)) + w3*(ρ(band5) - ρ(band6))/ (ρ(band5) + 

ρ(band6)) + w4*(ρ(band5) - ρ(band7))/ (ρ(band5) + ρ(band7))                           (1) 

SWVI = (ρ(band5) - ρ(band6))/ (ρ(band5) + ρ(band6))                                       (2) 

ρ is the reflectance of each band, and the weights of the VIGS components were 

determined according to Hede [18]: w1 = 1.0; w2 = 0.5; w3 = 1.5; w4 = 1.5. 

3.1.2. Spectral Feature Extraction. 

Due to the information redundancy among OLI reflectance data in each band, the 

principal component transformation method was applied to compress and enhance the 

spectral information of OLI images in the study area [20]. And, principal components 

were selected based on the information content of each principal component and the 

ability to distinguish lithological units.  

3.1.3. Texture Feature Extraction 

Haralick et al. [21] proposed 14 texture features based on the texture’s statistical 

information of the image using a grayscale co-occurrence matrix. Among them, eight 

texture features, mean, variance, homogeneity, contrast, dissimilarity, entropy, second 

moment, and correlation, were often used in lithological classification studies [22-25]. 

In this study, the above eight statistical parameters were selected to extract the texture 

images of the study area. In this study, the band5 (0.865μm) with the largest covariance 

value (919.04) [22,25] was selected for texture calculation for OLI data. Meanwhile, 

the texture images were extracted according to six window sizes:3 × 3, 5 × 5, 7 × 7, 9 × 

9, 11 × 11, and 13 × 13, and the distinguishability of the lithological units in each 
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texture image was compared, and 5 × 5 was selected as the window size for texture 

feature extraction in this study. 

3.1.4. Ground Temperature Feature Extraction 

The surface temperature feature of the study area were extracted based on the TIRS 

band10 (10.9μm) and the thermal radiative transfer model. Firstly, the MODTRAN 

atmospheric radiative transfer model was applied to eliminate the atmospheric 

influence on the surface thermal radiation. Then the surface thermal radiation intensity 

were revised to the actual surface temperature [26]. 

3.1.5. Calculation of Terrain Factor 

Topography results from climate and tectonic interactions [27], while the susceptibility 

of rock units largely controls terrain to erosion. In this study, four topographic factors, 

elevation (H), surface roughness (SR), height integral (HI), and surface index (SI), 

were calculated based on 30 m spatial resolution ASTER GDEM data and the ability of 

each topographic factor to distinguish lithological units in the study area was evaluated, 

where H is extracted directly from the DEM data, SR is the ratio of the spherical area to 

the projected area in the grid and is used to quantify the tectonic-geomorphic changes, 

with higher SR values indicating severe regional deformation. HI is an index used to 

evaluate the stage of geomorphic development [28,29]. HI values between 0 and 1 

indicate erosion processes, where high values indicate undulating mountainous 

landscapes and low values indicate flat plain landscapes. SI combines the 

characteristics of SR and HI, with positive SI values corresponding mainly to hard and 

slightly eroded lithologies, while negative SI values correspond to areas susceptible to 

erosion [30]. HI and SI are calculated as in equations (3) and (4). 
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3.2. Feature Selection and Classification Dataset Generation 

3.2.1. Feature Selection 

Randomly selected 10% of the total number of image pixels of each lithological unit as 

the training samples. These samples were used to evaluate the effectiveness of each 

extracted remote sensing feature in distinguishing lithological units in the study area, 

and also participated as training samples in lithological classification. The distribution 

of vegetation, spectral, texture, temperature and topographic feature values of training 

samples were obtained separately to compare the ability to distinguish lithological units, 

as shown in figures 2,3,4. Figure 2 shows that, among the vegetation indices, NDVI has 

a better ability to distinguish the training image pixels of each lithological unit than 

VIGS and SWVI. Among the topographic factors, the mean values and values ranges 

of DEM for Holocene gravels and Pleistocene gravels are significantly larger than 

those for Holocene clays and Holocene sands; in SR, the mean values and value ranges 

for Holocene gravels are significantly smaller than those for the other three lithological 
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units. Therefore, DEM and SR were selected as topographic factors to participate in the 

automatic lithological classification. In the surface temperature (TEM), the mean 

values and value ranges of the Holocene clay are significantly lower than those of the 

Holocene sand. Figure 4 shows that among the texture features, the variance (VAR), 

contrast (CON), and dissimilarity (DIS) have the most significant differences in the 

mean values and value ranges of the training image pixels for each lithological unit. 

 

Figure 2. PCs value distributions of the training areas (Each box plots shows the location of the 10th, 25th, 

50th, 75th, and 90th percentiles using horizontal lines (boxes and whiskers), the circles are 5th and 95th 
percentiles, and the triangles are mean values). 

 

Figure 3. VIs, topography factors, and surface temperature values distributions of the training areas. 

3.2.2. Classification Dataset Generation 

To compare the effectiveness of each remote sensing feature of spectral (SPEC, PC1+PC2 

+PC4+PC6+PC7), vegetation (VI, NDVI+VIGS+SWVI), texture (VAR+CON+DIS), surface 

temperature (TEM), and topography (TOPO, DEM+SR) on the classification of lithology 

in the study area, 16 classification datasets (SPEC, SPEC+VI, SPEC+TEX, SPEC+TEM, 

SPEC+TOPO, SPEC+VI+TEX, SPEC+VI+TEM, SPEC+VI+TOPO, SPEC+TEX+TEM, 

SPEC+TEX+TOPO, SPEC+TEM+TOPO, SPEC+VI+TEX+TEM, SPEC+VI+TEX+TOPO, 

SPEC+VI+TEM+TOPO, SPEC+TEX+TOPO+TEM, SPEC+VI+TEX+TEM+TOPO) were constructed 

based on the spectral features, and other features were added in turn. 
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Figure 4. Texture images values distributions of the training areas. 

3.3. Random Forest Classification 

Random forest (RF) image supervised classification algorithm was proposed by 

Breiman [31], and some scholars have verified the feasibility of its application in 

lithology classification of hyperspectral and multispectral remote sensing images [6,32]. 

In this study, 16 classification datasets were used for RF lithology classification 

experiments. To ensure the objectivity of the comparative experiment, the same 

training samples and the same number of decision trees (100) were selected from 16 

groups of RF lithology classification experiments. Before the classification, 

Normalized Difference Water Index (NDWI) and Normalized Difference Build-up 

Index (NDBI) were used to construct masks to eliminate water and construction land 

interference on lithology classification. 

3.4. Accuracy evaluation method 

A pixel-based classification accuracy evaluation method is used in the study. The 

confusion matrix method is used to calculate the overall classification accuracy (OA), 

producer accuracy (PA), user accuracy (UA), and kappa coefficient. The standard 

reference for accuracy evaluation is the geological map (figure 1b). 90% of the pixels 

excluding 10% of the pixels used as training samples are used as the validation samples 

to evaluate the accuracy. 

4. Research Results 

The results of accuracy evaluation show that SPEC+TEX+TOPO+TEM has the highest 

overall classification accuracy and Kappa coefficient, which are 80.99% and 0.6744, 

respectively. While, the overall classification accuracy and Kappa coefficient of SPEC 

were 77.75% and 0.6093, respectively. Among the 4 datasets combining spectral 

features and a certain other feature, SPEC+TOPO has the highest overall classification 

accuracy and Kappa coefficient of 80.00% and 0.6553, respectively; Among the 6 
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datasets, combining spectral features and two certain other features, 

SPEC+TEX+TOPO got the highest overall classification accuracy and kappa 

coefficient, which were 80.49% and 0.6646, respectively; Among the 4 datasets, 

combining spectral features and two certain other features, SPEC+TEX+TOPO+TEM 

has the highest overall classification accuracy and Kappa coefficient. The classification 

accuracy and Kappa coefficient of the classification dataset, including spectral, 

vegetation, texture, surface temperature, and terrain features, are 80.66% and 0.6678, 

respectively. 

The classification results of the four classification datasets of SPEC, SPEC+TEM, 

SPEC+TEM+TOPO, SPEC+TEM+TOPO+TEX are shown in figure 5 (a, b, c, d). It 

can be observed that the misclassification in each lithological unit decreases obviously 

with the addition of geothermal, topographic, texture, and other features, and the 

classification effect improvement of Holocene gravel is the most obvious, as shown in 

table 1. 

Table 1. Confusion matrices of the classification results. 

Classification  

data set 

Holocene clay 
Holocene  

sand 

Holocene 

gravel 

Pleistocene 

gravel OA Kappa 

PA UA PA UA PA UA PA UA 

SPEC 92.42 73.8 76.88 85.28 8.69 87.16 38.52 73.7 77.75 0.609 

SPEC+VI 91.86 73.25 76.52 84.6 8.94 89.58 36.41 72.54 77.16 0.599 

SPEC+TEX 92.23 75.78 79.86 83.64 12.39 86.01 33.98 74.35 78.62 0.625 

SPEC+TEM 92.08 74.51 78.68 84.8 8.34 93.36 36.64 71.79 78.07 0.615 

SPEC+TOPO 92.33 78.03 79.12 84.22 31.61 76.3 42.25 74.47 80.00 0.655 

SPEC+VI+TEX 91.73 75.55 79.08 83.35 14.02 85.87 35.19 71.67 78.26 0.620 

SPEC+VI+TEM 92.06 73.89 77.57 84.59 6.75 91.94 35.47 69.61 77.46 0.604 

SPEC+VI+TOPO 92.22 77.15 78.38 84.31 24.29 77.82 42.08 69.95 79.29 0.642 

SPEC+TEX+TEM 92.06 76.65 80.39 83.72 14.01 83.39 36.56 70.43 78.99 0.634 

SPEC+TEX+TOPO 92.17 79.37 80.72 83.28 31.06 76.94 42.48 74.25 80.49 0.665 

SPEC+TEM+TOPO 92.48 78.55 79.44 84.23 25.81 74.43 43.76 69.49 80.00 0.656 

SPEC+VI+TEX 

+TEM 
92.05 76.65 80.09 83.79 14.12 88.91 37.99 69.94 79.01 0.634 

SPEC+VI+TEX 

+TOPO 
92.04 79.11 80.58 83.6 28.23 77.89 43.34 71.25 80.31 0.662 

SPEC+VI+TEM 

+TOPO 
92.52 77.74 78.98 84.67 25.82 77.4 43.1 70.74 79.80 0.652 

SPEC+TEX+TOPO 

+TEM 
92.2 80.21 81.49 83.64 30.68 77.81 45.32 72.31 80.99 0.674 

SPEC+VI+TEX 

+TEM+TOPO 
92.36 79.67 80.92 83.9 26.28 79.5 45.35 69.87 80.66 0.668 

5. Discussion 

In this study, the results show that the effectiveness of different remote sensing features 

for the automatic classification of lithology in the vegetation coverage area is different. 

The results show that texture, surface temperature, and terrain features can effectively 

improve classification accuracy. SPEC+TEX+TOPO+TEM achieved the highest 

overall classification accuracy (80.99%) and Kappa coefficient (0.6744). Compared 

with SPEC, respectively, the overall classification accuracy of SPEC+TEX, 

SPEC+TEM and SPEC+TOPO is improved by 0.87%, 0.32%, and 2.25%. It shows that 

adding topographic factors has the most obvious improvement effect on the accuracy of 

lithology classification. Lithological units have different topography and landforms. 

Holocene clay and Holocene sand are mainly distributed in plain areas, while Holocene 

gravel and Pleistocene gravel are mainly distributed in hilly areas. The classification 

accuracy evaluation results also show that the producer accuracy of the Holocene 
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gravel is significantly improved (increased by 22.92%) for SPEC+TOPO compared 

with SPEC data. 

 

                             (a) classification of SPEC.  (b) Classification of SPEC+TEM. 

 

(c) Classification of SPEC+TEM+TOPO. (d) Classification of SPEC + TEM + TOPO 

+TEX. 

Figure 5. Lithological classification results of the study area, using different data sets.  

However, we still observed that the classification accuracy of Holocene gravel and 

Pleistocene gravel is still relatively low, and the highest producer accuracy of each 

classification data set is only 31.06% and 45.35% respectively, which may be related to 

the low DEM Resolution (30M). Compared with SPEC, the addition of texture features 

(SPEC+TEX) effectively improves the producer accuracy of Holocene silt (2.98%) and 

Holocene gravel (3.7%). The characteristics of surface temperature are helpful to 

distinguish Holocene clay and Holocene sand. The difference in surface temperature is 

mainly related to the properties of the underlying surface [26]. The surface temperature 

of the Holocene clay area in the study area is significantly lower than that of Holocene 

sand because the water holding capacity of clay is better than that of sand. Compared 

with SPEC, the addition of surface temperature (SPEC+TEM) can effectively improve 

the producer accuracy of Holocene sand (1.80%) and the user accuracy of Holocene 

clay (0.71%). 

In contrast, the addition of vegetation features failed to improve the classification 

accuracy. Compared with SPEC data, the addition of vegetation features (SPEC+VI) 

reduces the overall classification accuracy by 0.59%. This may be that vegetation 
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characteristics have been included in the spectral characteristics of vegetation, and the 

addition of vegetation index results in data redundancy. It may also be that the spectral 

resolution of near-infrared band of OLI data is insufficient to distinguish the difference 

of vegetation types and growth status effectively. In the next step, we will try to use 

hyperspectral data to extract vegetation features to assist lithology classification. 

6. Conclusion 

The main conclusions are as follows: 

(1) The random forest classification method combined with multi-features 

proposed in this paper can effectively divide the Quaternary lithology in the study area. 

The classification data set of spectral + textural + topographic+ geothermal 

(SPEC+TEX+TOPO+TEM) achieves the highest classification accuracy (OA, 

80.99%); Kappa coefficient, 0.6744). Compared with the spectral data set (SPEC), the 

overall classification accuracy is improved by 3.24%, and the Kappa coefficient is 

improved by 0.0651. 

(2) The results show that the effectiveness of different remote sensing features on 

lithological classification in vegetation covered areas is different. Terrain features have 

the most obvious improvement on the classification accuracy of Quaternary lithology 

in the study area, followed by surface temperature and texture characteristics. While 

vegetation indexes fail to improve the accuracy of lithology classification. 

The automatic classification method of Quaternary lithology proposed in this paper 

can be further applied to other vegetation covered quaternary areas.  
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