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Abstract. The temporal and spatial accuracy of precipitation of ensemble 

numerical forecast systems is an important factor that affects the level of 
meteorological and hydrological coupled forecasting. This article focuses on the 

current research of verification of precipitation accuracy and statistical 

post-processing. The verification of forecast precipitation accuracy mainly focuses 
on the probabilistic characteristics such deterministic accuracy, the resolution, the 

forecasting skills and the degree of dispersion. Some mainstream statistical 

post-processing methods have strong performance of spatial downscaling and error 
correction, but they commonly have the defect of destroying the temporal and 

spatial dependent structure of precipitation. A comprehensive statistical 

post-processing method integrated the three functions is the development direction 
in the future. At the same time, statistical post-processing methods to improve the 

certainty and probabilistic accuracy of forecast precipitation need to be 

systematically identified. Its impact on the spatio-temporal dependence structure 
also needs to be improved.    

Keywords. Ensemble numerical forecast, precipitation accuracy verification, 

statistical post-processing 

1. Introduction 

Ever since a long time, the hydrological forecasting features of the extending of 

effective foresight period, the improvement of forecasting accuracy and the quantifying 

of forecast uncertainty [1]. In recent years, the development of atmospheric dynamics 

and computer science has promoted the continuous advancement of numerical weather 

forecast technology. The global ensemble numerical forecast model can provide 

precipitation forecast information with a longer forecast period, combined with 

hydrological models, which has become an important development direction to 
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improve the level of hydrological forecasting [2]. However, affected by factors such as 

multi-scale complex weather systems and topographical fluctuations, the precipitation 

presents variation characteristics with complex and high-frequency temporal and 

spatial changes, which is one of the most difficult meteorological variables to predict in 

the ensemble numerical forecast system. 

At present, the calculation grid of the global ensemble numerical forecast model is 

relatively coarse, leading to the low spatial resolution of its precipitation forecast 

information, which does not match the spatial scale of the hydrological forecast model. 

In addition, the precipitation forecast results are affected by factors such as initial 

values and model errors [3], so there are still notable quantitative errors and 

uncertainties, which restrict its application in hydrological forecasting [4]. Therefore, 

post-processing measures from a statistical perspective such as continuous verification 

of the temporal and spatial accuracy and error characteristics of numerical precipitation, 

spatial downscaling, error correction, and probability forecasting are indispensable for 

obtaining high-resolution, high-precision and reliable ensemble precipitation forecast 

information. Scholars at home and abroad have carried out a lot of exploration about 

these two aspects, and actively promoted the improvement of the precipitation forecast 

performance of the ensemble numerical model. The research and current situation are 

timely and systematically integrated. Considering the needs of hydrological forecasting 

applications and analyzing research deficiencies, they propose the future development 

directions, which is important for mining the availability of numerical forecast 

precipitation information, and promoting the research and operational application of 

meteorological and hydrological coupled forecasting. 

2. Development of Ensemble Numerical Forecast and Verification of Precipitation 
Forecast Accuracy 

The meteorological ensemble numerical forecast system originated in the 1970s and 

has gone through three development stages of theoretical system improvement, 

operational system research and development, and weather forecast application. 

Through disturbing initial values and models, it mainly solves the forecast uncertainty 

problems caused by initial values and model errors [5]. The long-term disturbance 

research is mainly carried out in the initial field. The realization method has gradually 

developed from a simple random disturbance method based on analyzing the error 

probability distribution to a dynamic disturbance method combining data assimilation 

and error analysis. For example, the ensemble transform Kalman filter has been widely 

used [6]. The research on mode disturbance is relatively weak, mainly including 

single-mode physical parameterization disturbance and multi-mode integration [7]. 

Among them, in terms of multi-mode integration, the most influential one is the 

TIGGE (THORPEX Interactive Grand Global Ensemble) plan, which integrates the 

multi-member, multi-element, and multi-time-effect forecast information of the 

mid-term ensemble forecast system of multiple meteorological service centers [8]. The 

TIGGE can consider the uncertainty caused by model structure and data assimilation in 

addition to the initial value error. The implementation of this plan has greatly promoted 

the verification and interpretation of ensemble forecast products. 

A comprehensive understanding of the performance of the ensemble forecast 

model and the causes of model errors are very important for improving and perfecting 

the forecast model, and it can also provide a scientific basis for users to select ensemble 
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forecast products reasonably. The academic circles have extensively carried out 

verification of precipitation forecast accuracy for different ensemble models [9-12], 

which mainly involve two parts of the deterministic accuracy and the probabilistic 

accuracy. The assessment objects of deterministic accuracy are the ensemble average 

precipitation or single-member forecast precipitation, related to three aspects of the 

classification and identification ability of precipitation events with different thresholds, 

the spatial-temporal quantitative error, and the spatial-temporal dependence structure. 

The probabilistic verification focuses on the reliability, resolution, forecasting skills 

and dispersion degree to measure the accuracy of probability forecasting [13]. The 

study found that the ensemble forecast precipitation generally has problems of light 

rain nothing-happened reports, heavy rain missed reports, and light rain forecasting 

techniques not as good as heavy rains. At the same time, there are common problems 

such as low resolution and problems with under-dispersion or over-dispersion. 

However, the specific performance of different models varies with model structure, 

data assimilation, initial value disturbance, physical parameter schemes, etc. The 

precipitation forecast accuracy of the same model varies with geographic location, 

climatic characteristics, precipitation characteristics (type, intensity), and forecast 

period. In addition, the accuracy is also closely related to the time-space scale [9-10]. 

As shown in figure 1, the MMEF (Multi-model ensemble forecast) object of the three 

modes of ECMWF, CMA and NCEP to control the forecast precipitation gives the 

precipitation forecast accuracy of different forecast periods and different spatial 

locations in the Han River Basin, which has significant The characteristics of temporal 

and spatial heterogeneity. In general, the current inspections of ensemble precipitation 

forecasts mostly focus on the deterministic accuracy. Further research should be carried 

out on the uncertain features such as resolution, forecasting skills, and degree of 

dispersion. 

 

Figure 1. The spatial distribution of the accuracy of the precipitation time series of the multi-model 

ensemble average forecast in the Han River Basin. 

However, the deterministic and probabilistic accuracy verification both rely on 

reliable ground benchmark precipitation data. The benchmark data used in the existing 

research mainly includes precipitation observed by discrete rain gauge [12], 

precipitation retrieval by satellites such as TRMM (The Tropical Rainfall Measuring 

Mission) [10], CMORPH (the Climate Prediction Center morphing method) and rain 

gauge fusion precipitation [14]. The spatial coverage and representativeness of 

precipitation observed by rain gauges may be insufficient. The precipitation of satellite 
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grids and other grids have prominent problems of their own errors [15-16], which all 

affect the reliability of the verification results. Therefore, the establishment of 

high-quality surface benchmark rainfall data is very important for the verification of 

ensemble forecast precipitation accuracy, however, it has not yet attracted enough 

attention. Of course, some scholars have studied accuracy evaluation methods that do 

not rely on benchmark data. For example, the Extended Triple collocation (ETC) 

method proposed by McColl et al. [17] relieves the constraint of benchmark 

precipitation, in which only three sets of independent simulation models or forecast 

data can be used to evaluate RMSE and CC but the probabilistic accuracy is not 

covered. 

3. Statistical Post-processing of Ensemble Forecast Precipitation Statistics and Its 
Benefits Evaluation 

3.1. Statistical Post-processing Method 

The statistics post-processing of ensemble forecast precipitation mainly includes three 

aspects of statistical downscaling, correction of quantitative error and probability 

forecasting. Scholars at home and abroad have proposed a series of statistical analysis 

methods, showing a development trend from single function to multi-functional 

integration. Traditional methods such as EMOS (Ensemble model output statistics), 

BMA (Bayesian model averaging) and AM (Analog method) have been developed with 

functions of downscaling, error reduction and probability forecasting. In these methods, 

the statistical downscaling is generally implied by simple spatial interpolation (such as 

linear interpolation, neighborhood moving weighted average, etc.) in the matching 

process of measured precipitation and forecast precipitation [18-20]. The error 

correction and probability forecasting are the core parts of statistical post-processing. 

According to the precipitation probability theoretical distribution involved, the 

existing statistical post-processing methods are divided into two categories. Methods 

non-involved to probability distribution, such as multi-mode integration [21], 

cumulative experience frequency matching correction [22], and AM [18] are the most 

representative methods. These kinds of methods can avoid the estimation of the 

precipitation probability distribution, but it is often limited by the lack of sufficient 

sample data, especially for extreme precipitation, which affects the reliability of the 

results. The application of second-precipitation forecast products alleviates this 

problem above to a certain extent [19, 23]. The method based on the theoretical 

probability distribution mainly uses the ensemble forecast information to construct the 

precipitation probability distribution, which can realize the extrapolation of extreme 

precipitation. 

However, due to the large number of zero values and significant bias-normal 

characteristics in precipitation on certain time scales (especially daily, hour and below), 

it is usually necessary to select a suitable probability distribution linear and make some 

proper mathematical processing. The BMA method uses Logistic and Gamma 

distributions to construct a mixed probability distribution of precipitation probability 

and non-zero precipitation, and uses the Bayesian weighted average principle to correct 

the probability of precipitation [23]. The EMOS method uses certain mathematical 

processing on the single probability distribution, as the theoretical probability 

distribution linear of the measured precipitation, which establishes the regression 
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relationship between the distribution parameters and the ensemble forecast 

precipitation statistics, so as to obtain the conditional probability distribution of the real 

precipitation. There are many mathematical processing methods for the linear 

probability distribution. For example, Scheuerer [24] censors the part of the generalized 

extreme value distribution less than zero, and Scheuerer and Hamill [20] censor the 

part of the Gamma distribution less than zero and shift it to the left. In addition to the 

above-mentioned methods involving univariate probability distribution estimation, the 

Bayesian joint probability (BJP) distribution [25-26] and the meta-Gaussian 

distribution [27] for joint forecasting and other multivariate probability methods for 

measured precipitation, are applied to statistical post-processing, thus the correlation 

between forecast and measured precipitation are taken into consideration. 

In general, the existing statistical post-processing methods have shown positive 

effects in correcting quantitative errors and improving forecasting skills. However, 

most methods take the forecast precipitation of a single time period and isolated grid 

points (or stations) as the research object, which often destroys the temporal and spatial 

continuity of precipitation [25, 26, 28]. For example, BMA and EMOS methods can 

directly derive the conditional probability distribution of forecast precipitation at each 

grid point and time period. If ensemble forecast precipitation data is required, it must 

be randomly sampled from the precipitation probability distribution at each grid point. 

Obviously, this way disturbs the temporal and spatial dependency structure of 

precipitation between adjacent grid points and adjacent periods [29]. How to 

reconstruct the temporal and spatial dependence of forecast precipitation is a major 

problem in post-statistical processing? The existing studies have adopted the rank order 

structure based on a specific multivariate dependent template to re-ordered the 

above-mentioned post-processing methods after outputting ensemble forecast 

precipitation, to achieve spatial correlation and temporal continuity reconstruction, 

specifically including two types of empirical method and parameterization method. 

Among the empirical methods, the Schaake shuffle method [29] has been widely 

used. It is a traditional method that uses the temporal and spatial rank relationship of 

historically similar measured precipitation as a template [27,30], but more complex 

statistics dependency relation cannot be considered. It also ignores the particularity of 

the atmospheric state and evolution trend during the forecast period [31]. Scheuerer et 

al. [30] considered the similarity between historical precipitation and the marginal 

distribution of precipitation during the forecast period, and improved the selection 

method of historical dates in the Schaake shuffle method. Ensemble copula coupling 

(ECC) is also an empirical method. It uses the numerical model to output the temporal 

and spatial continuous structure contained in the ensemble forecast precipitation as a 

template, and the best possible result is only to recover the model precipitation 

structure [32]. The parameterization method also uses the temporal and spatial 

dependence of historically similar measured precipitation as a template to construct a 

multivariate joint probability distribution of precipitation at adjacent grid points and 

periods within a certain temporal and spatial range, which is suitable for 

low-dimensional temporal and spatial scales. The connection function among variables 

can be Gaussian copula etc. [33]. 

Some scholars have also combined the method of geo-statistics output disturbance 

with the method of ensemble model output statistics to explore the reconstruction of the 

spatial structure of precipitation [34]. Lerch et al. [28] compares the effects of Schaake 

shuffle, ECC, and Gaussian copula methods. It is found that Schaake shuffle is 

generally better than Copula methods. However, the effectiveness of various methods 
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largely depends on the degree of fidelity of their own structures of the adopted models 

of forecast precipitation or historically similar precipitation. In general, the research on 

this issue is still in its infancy. A reasonable precipitation spatio-temporal dependence 

structure is very important for hydrological forecasting [30, 35]. Therefore, it is urgent 

to develop a method that can improve spatial resolution and reduce time and space. A 

statistical post-processing method for improving spatial resolution, reducing 

temporal-spatial errors and reasonable reconstruction of temporal and spatial dependent 

structures is urgent to be developed. 

3.2. Effect Evaluation of Statistical Post-Processing  

Effect evaluation is an important way to understand the performance of statistical 

post-processing methods and provide feedback information for method improvement. 

Comparative studies on the effects of different post-processing methods have been 

extensively carried out, focusing on the analysis of the improvement benefits of the 

deterministic and probabilistic accuracy of ensemble precipitation. The article adopts 

the coupling method of Quantile-Mapping (QM) and Joint Probability Distribution 

with Censored Data (CJPD) to carry out the error correction study of precipitation 

forecast in the Han River Basin. It is found that regardless of the forecast periods, the 

improvement benefits of the PC, MAE and NSE indicators all exceed 10%, and present 

a spatiotemporal pattern in which the western part of the basin is higher than the 

eastern part, and this divergence increases significantly with the extension of the 

forecast periods, which is highly consistent with the temporal and spatial distribution 

characteristics of the forecast precipitation PC before the correction (figure 2). Zhao et 

al. [36] compared the frequency matching correction method with the BJP method and 

found that both can significantly reduce the quantitative error, but the former cannot 

improve the dispersion of the model forecast precipitation, and the latter can improve 

the reliability and consistency of the forecast precipitation. At the same time, it is 

recognized that the improvement benefit is related to the correlation coefficient 

between forecast and actual precipitation. Medina et al. [37] found that the AM method 

is better than the logistic regression method in improving forecasting techniques, 

reliability and resolution of ECMWF (European Centre for Medium-Range Weather 

Forecasts) and GEFS (Global Ensemble Forecast System) in ensemble numerical 

forecast system. The improvement benefits of GEFS precipitation with precipitation 

forecasting skills less than 0 are very obvious. However, Scheuerer and Hamill [20] 

pointed out that the AM method is not as effective as the EMOS method based on 

censored Gamma distribution in improving the probabilistic accuracy of GEFS 

precipitation. 

It can be seen that there are differences in the performance of different methods. 

The benefits of statistical post-processing are related to the quality of the precipitation 

forecast by the original model. In addition, some scholars have found that the effect of 

improving the accuracy of forecasting precipitation varies with precipitation magnitude 

and temporal and spatial location. Stauffer et al. [38] found that the extent of improving 

the BSS (Brier score skill) of the EMOS method tends to decrease with the 

prolongation of the forecast period. At the same time, the benefit of improving the 

forecasting skills of light rain is more obvious than that of heavy rain. 

Verkade et al. [31] observed that statistical post-processing methods cannot 

improve the reliability and resolution of ensemble precipitation forecasts at the same 

time. The improvement of the reliability item CRPSSrel in CRPSS (Continuous ranked 
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probability score skill) is at the cost of the loss of the resolution item CRPSSres. The 

improvement of CRPSSrel gradually decreases with the increase of precipitation. In 

general, the research on systematically evaluating the certainty and probabilistic 

accuracy gains of ensemble precipitation, on identifying its temporal and spatial 

distribution characteristics and its influencing factors is not sufficient. In addition, the 

quantitative analysis of the temporal and spatial dependent structural changes of 

precipitation is relatively weak. 

 

Figure 2. The spatial distribution of the accuracy gains of the raster forecast precipitation in the Han 

River Basin after the QM-CJPD method is corrected. 

4. Shortcomings and Prospects 

In recent years, a large number of studies have been carried out on the precipitation 

accuracy and statistical post-processing of ensemble forecasts. It has been confirmed 

that statistical post-processing has shown positive effects in solving low spatial 

resolution, improving certainty and probabilistic accuracy, which brings new 

opportunities to improve the level of hydrological forecasting. However, the existing 

statistical post-processing methods still have some shortcomings in the reconstruction 

of the temporal and spatial dependence structure of precipitation, in the identification 

of the temporal and spatial heterogeneity of the forecast precipitation accuracy gains, 

which is the focus of future research. 

Regarding the accuracy verification of the precipitation information forecast in the 

ensemble numerical forecast system, while analyzing the deterministic accuracy, it is 

also necessary to focus on the uncertainty characteristics such as the resolution, the 

forecasting skills, and the degree of dispersion, so as to provide more detailed prior 

knowledge for statistical post-processing. 

The mainstream statistical post-processing methods mostly focus on forecast 

precipitation in isolated temporal and spatial locations as the research object, which 

often destroys the temporal and spatial dependency structure of forecast precipitation. 

Research on this problem is still very weak, and it is urgent to develop a statistics 

post-processing method for ensemble forecast precipitation that integrates improving 

spatial resolution, correcting quantitative errors, and reconstructing spatio-temporal 

dependent structures. 

The verification of the ensemble numerical model precipitation forecast and the 

performance of statistical post-processing methods are still needed to be vigorously 

deepened. First, the lack of spatial coverage, representativeness, and accuracy of 
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surface benchmark data may affect the objective evaluation of ensemble precipitation 

accuracy and post-processing methods. It is urgent to develop spatially continuous and 

reliable ground benchmark precipitation as the base. Second, the systematic research on 

the temporal and spatial distribution characteristics and influencing factors of the 

statistical post-processing to improve the certainty and the probabilistic accuracy gains 

of ensemble precipitation is relatively weak. At the same time, the quantitative analysis 

of the influence of the temporal and spatial dependence of precipitation is obviously 

lacking. 

Acknowledgments 

National Key R&D Program of China(2016YFC0400902); National Science 

Foundation of China (52009081); Special funded project for basic scientific research 

operation expenses of the Central Public Welfare Scientific Research Institutes of 

China (Y519006). 

References 

[1] Xia J, Wang HY, Gan YY, et al. Research progress in forecasting methods of rainstorm and flood 

disaster in China. Torrential Rain and Disasters. 2019 Otc; 38(5): 416-421. (In Chinese) 
[2] Zhao LN, Liu Y, Dang HF, et al. The progress on application of ensemble prediction to flood 

forecasting. Journal of Applied Meteorological Science. 2014 Dec; 25(6): 641-653. (In Chinese) 

[3] Chang J, Peng XD, Fan GZ, et al. Error Calibration of Numerical Weather Prediction with Historical 
Data. Acta Meteorologica Sinica.2015 Apr; 73(2): 341-354. (In Chinese) 

[4] Cloke HL, Pappenberger F. Ensemble flood forecasting: A review. Journal of hydrology. 2009 Sep; 

375(3-4): 613-626. 
[5] Chen J, Chen DH, Yan H. A Brief review on the development of ensemble prediction system. Journal of 

Applied Meteorological Science. 2002 Apr; 13(4): 497-507. (In Chinese) 

[6] Gao L, Chen J, Zheng JW, et al. Progress in researches on ensemble forecasting of extreme weather 
based on numerical models. Advances in Earth Science. 2019 Jun; 34(7): 706-716. (In Chinese) 

[7] Duan MJ, Wang P X. Advances in researches and applications of ensemble prediction. Transactions of 

Atmospheric Sciences. 2004 Feb; (2): 279-288. (In Chinese) 
[8] Park YY, Buizza R, Leutbecher M. TIGGE. Preliminary results on comparing and combining 

ensembles. Quarterly Journal of the Royal Meteorological Society. 2008 Jan; 134(637): 2029-2050. 

[9] Zhao LN, Wu H, Tian FY. Assessment of probabilistic precipitation forecasts for the huaihe basin using 
TIGGE data. Meteorological Monthly. 2010 Jun; 36(7): 133-142. (In Chinese) 

[10] Su X, Yuan H, Zhu Y, et al. Evaluation of TIGGE ensemble predictions of Northern Hemisphere 

summer precipitation during 2008-2012. Journal of Geophysical Research: Atmospheres. 2014 Feb; 

119(12): 7292-7310. 

[11] Louvet S, Sultan B, Janicot S, et al. Evaluation of TIGGE precipitation forecasts over West Africa at 

intraseasonal timescale. Climate Dynamics. 2016 Jul; 47(1-2): 31-47.  
[12] Aminyavari S , Saghafian B , Delavar M . Evaluation of TIGGE ensemble forecasts of precipitation in 

distinct climate regions in Iran. Advances in Atmospheric Sciences. 2018 Feb; 35(4): 457-468. 

[13] Bi BG, Dai K, Wang Y, et al. Advances in techniques of quantitative precipitation forecast. Journal of 
Applied Meteorological Science. 2016 Sep; 27(5): 534-549.(In Chinese) 

[14] Zhi XF, Lv Y. Calibration of the multimodel precipitation forecasts in China using the frequency 

matching method. Transactions of Atmospheric Sciences. 2019 Sep; 42(6): 814-823. (In Chinese) 
[15] Tian Y, Peters-Lidard CD, Eylander JB, et al. Component analysis of errors in satellite-based 

precipitation estimates. Journal of Geophysical Research: Atmospheres. 2009 Dec; 114(D24). 

[16] Shen Y, Zhao P, Pan Y, et al. A high spatiotemporal gauge-satellite merged precipitation analysis over 
China. Journal of Geophysical Research: Atmospheres. 2014 Mar; 119(6): 3063-3075. 

[17] McColl KA, Vogelzang J, Konings AG, et al. Extended triple collocation: Estimating errors and 

correlation coefficients with respect to an unknown target. Geophysical Research Letters. 2014 Aug; 
41(17): 6229-6236. 

L. Li et al. / Research Progress on Precipitation Accuracy Verification 537



 

[18] Hamill TM, Whitaker JS. Probabilistic quantitative precipitation forecasts based on reforecast analogs: 
Theory and application. Monthly Weather Review. 2006 Nov; 134(11): 3209-3229.  

[19] Hamill TM, Scheuerer M, Bates GT. Analog probabilistic precipitation forecasts using GEFS 

reforecasts and climatology-calibrated precipitation analyses. Monthly Weather Review. 2015 Aug; 
143(8): 3300-3309.  

[20] Scheuerer M, Hamill TM. Statistical postprocessing of ensemble precipitation forecasts by fitting 

censored, shifted gamma distributions. Monthly Weather Review. 2015a Nov; 143(11): 4578-4596. 
[21] Cane D , Milelli M . Multimodel SuperEnsemble technique for quantitative precipitation forecasts in 

Piemonte region. Natural Hazards & Earth System Sciences. 2010 Feb; 10(2): 265-273. 

[22] Li J, Du J, Chen CJ. Introduction and analysis to frequency or area matching method applied to 
precipitation forecast bias correction. Meteorological Monthly. 2014 Mar; 40(5): 580-588. (In Chinese) 

[23] Raftery AE, Gneiting T, Balabdaoui F, et al. Using Bayesian model averaging to calibrate forecast 

ensembles. Monthly weather review. 2005 May; 133(5): 1155-1174.  
[24] Scheuerer M. Probabilistic quantitative precipitation forecasting using ensemble model output statistics. 

Quarterly Journal of the Royal Meteorological Society. 2013 Jul; 140(680): 1086-1096.  
[25] Robertson DE, Shrestha DL, Wang QJ. Post processing rainfall forecasts from numerical weather 

prediction models for short term streamflow forecasting. Hydrology & Earth System Sciences 

Discussions. 2013 Sep; 17(9): 3587-3603. 
[26] Shrestha DL, Robertson DE, Bennett J C, et al. Improving precipitation forecasts by generating 

ensembles through postprocessing. Monthly Weather Review. 2015 Sep; 143(9): 3642-3663. 

[27] Li W, Duan Q, Ye A, et al. An improved meta-Gaussian distribution model for post-processing of 
precipitation forecasts by censored maximum likelihood estimation. Journal of Hydrology. 2019 Jul; 

574: 801-810.  

[28] Lerch S, Baran S, Möller A, et al. Simulation-based comparison of multivariate ensemble 
post-processing methods. Nonlinear Processes in Geophysics Discussions. 2020 Jun: 1-30. 

[29] Clark M, Gangopadhyay S, Hay L, et al. The Schaake shuffle: A method for reconstructing space–time 

variability in forecasted precipitation and temperature fields. Journal of Hydrometeorology. 2004 Feb; 
5(1): 243-262.  

[30] Scheuerer M, Hamill TM, Whitin B, et al. A method for preferential selection of dates in the Schaake 

shuffle approach to constructing spatiotemporal forecast fields of temperature and precipitation. Water 
Resources Research. 2017 Mar; 53(4): 3029-3046.  

[31] Verkade JS, Brown JD, Reggiani P, et al. Post-processing ECMWF precipitation and temperature 

ensemble reforecasts for operational hydrologic forecasting at various spatial scales. Journal of 
Hydrology. 2013 Sep; 501: 73-91.  

[32] Schefzik R, Thorarinsdottir TL, Gneiting T. Uncertainty quantification in complex simulation models 

using ensemble copula coupling. Statistical Science. 2013 Nov; 28(4): 616-640. 
[33] Möller A, Lenkoski A, Thorarinsdottir TL. Multivariate probabilistic forecasting using ensemble 

Bayesian model averaging and copulas. Quarterly Journal of the Royal Meteorological Society. 2012 

Sep, 139(673): 982-991. 
[34] Feldmann K, Scheuerer M, Thorarinsdottir TL. Spatial postprocessing of ensemble forecasts for 

temperature using nonhomogeneous Gaussian regression. Monthly Weather Review. 2015 Mar, 143(3): 

955-971. 
[35] Bellier J, Bontron G, Zin I. Using meteorological analogues for reordering postprocessed precipitation 

ensembles in hydrological forecasting. Water Resources Research. 2017 Nov; 53(12): 10085-10107. 

[36] Zhao T, Bennett JC, Wang QJ, et al. How suitable is quantile mapping for postprocessing GCM 

precipitation forecasts?. Journal of Climate. 2017 May; 30(9): 3185-3196.  

[37] Medina H, Tian D, Marin FR, et al. Comparing GEFS, ECMWF, and postprocessing methods for 

ensemble precipitation forecasts over Brazil. Journal of Hydrometeorology. 2019 Apr; 20(4): 773-790.  
[38] Stauffer R, Umlauf N, Messner JW, et al. Ensemble postprocessing of daily precipitation sums over 

complex terrain using censored high-resolution standardized anomalies. Monthly Weather Review. 

2017 Mar; 145(3): 955-969. 

L. Li et al. / Research Progress on Precipitation Accuracy Verification538


