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Abstract. In this paper, global sensitivity analyses of attenuation zones of 2D 

periodic foundations are conducted. Global sensitivity analyses of upper bound 
frequency and lower bound frequency of the 1st attenuation zone of 2D periodic 

foundation are conducted considering four input parameters, i.e., initial stress ratio, 

filling ratio of core, filling ratio of resonator and periodic constant. Interactions 
and relative importance of input parameters are calculated. 
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1. Introduction 

Periodic composite structures exhibit unique wave propagation property, i.e., 

attenuation zones (AZs) where elastic or acoustic waves are prohibited to propagate. 

The unique wave propagation property of periodic composite structures has also 

motivated researchers to design periodic foundations and seismic metamaterials to 

isolate the dominant frequency components of seismic waves [1-2]. 

In the previous studies of AZs of periodic foundations, the parametric analysis and 

sensitivity analysis are mainly conducted by varying only one parameter at a time with 

other parameters keeping unchanged [3-5]. However, this kind of parametric analysis is 

not able to recognize the most influential parameter or investigate the interactions of 

different parameters. In the present paper, the global sensitivity analysis method 

combined with the Gauss-Lobatto integration is extended to investigate the AZs of 2D 

periodic foundations. The rest of the present paper is organized as follows. In Section 2, 

the computational method is developed. Global sensitivity analyses of upper bound 

frequency (UBF), and lower bound frequency (LBF) of the 1st AZ are performed in 

Section 3. In addition, fitting functions of the LBF and UBF of the 1st AZs are 

established in Section 3. Finally, some conclusions are drawn in Section 4. 
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2. Governing equations 

2.1. AZs of 2D Periodic Foundations 

Figure 1 illustrates the schematic of a 2D periodic foundation. In this paper, the effect 

of upper loads due to the superstructure was considered as uniformly distributed 

homogeneous initial stress 
0

zz�  in the 2D periodic foundation for simplicity. A typical 

unit cell can be identified, as shown in figure 1, where the thickness of coating layer is 

tk, the square cylinder core length of a side is l and the periodic constant i.e., the side 

length of the unit cell is a.  
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Figure 1. Schematic of a 2D periodic foundation. 

The basic equations in an infinite homogeneous solid with initial stress due to the 

superstructure can be given as  

� �0

, , ,ij j i k kj ij
u u� � �� � iu�u ,  (1) 

where , , , ,i j k x y z� , ij�  is the stress tensor, the comma followed by the subscript j 
denotes space differentiation with respect to the j coordinate, iu  is the displacement in 

the i coordinate direction, 
0

kj�  is the initial stress tensor, �  is the mass density, the dot 

over displacement represents time differentiation. 

Consider a harmonic in-plane wave (coupled wave by P and SV waves) with the 

angular frequency ω and wave vector x x z zk k� �k e e , where xk , zk , xe  and ze are the 

phase constants and unit wave vectors in the x- and z-directions, respectively. Let u and 

w denote the displacement components in the x- and z-directions, respectively. The 

field equations for the in-plane waves in the 2D periodic foundation can be expressed 

as 
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where the superscript e denote the material of the cores, coating layers, and matrix. 

The strains in the 2D periodic foundation can be given as 
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The constitutive equations can be expressed as 
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, ( )ev  and ( )eE  are the Poisson ratio and Young modulus of the 

material e. 

According to the Bloch-Floquet theory, the periodic boundary conditions of the 

typical unit cell have the form of 

i( , ) ( , )et t �� � �� k ar a r                                                                                         (5) 

where �  denotes the displacement and stress field function, r is the space vector of a 

point on the boundaries of a typical unit cell, � �x x z za n n� �a e e , nx and nz are integers, 

i 1� � . 

By various numerical methods, such as the FEM and the WFQEM, the dynamic 

equations for in-plane waves in the 2D periodic foundation can be obtained 

0 2( ) ( ) ( )�
 �� � �� �K k K k k M X 0  (6) 

where M , 
0 ( )K k  and ( )K k  are the mass matrix, geometric stiffness matrix due to the 

initial stress and stiffness matrix of the unit cell, respectively; X is the nodal 

displacement vector. For a given wave vector k, the eigenfrequencies ω can be 

obtained by Equation (6). By varying the wave vector k in the first irreducible Brillouin 

zone, the attenuation zones can be obtained by identifying the gaps in adjacent 

dispersion curves. 

2.2. Sobol’ Sensitivity Analyses  

By using the Gauss-Lobatto integration, the accuracy of Sobol’ sensitivity analysis 

method has been improved comparing with the traditional one based on the widely 

used Monte Carlo integration method. The algorithm of the Sobol’ sensitivity analysis 

method combined with the Gauss-Lobatto integration can be found in the previous 

paper of the authors [6]. 
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3. Results and Discussion 

In this paper, the square cores, matrix and coating layers were made of steel, concrete, 

and rubber , respectively; and the material properties are shown in table 1. In addition 

to the periodic constant, three other parameters of the 2D periodic foundation were 

considered in the global sensitivity analysis, i.e., the filling ratio of core 

2
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2 k

lf
l t

� �
� � �� !

, 

filling ratio of resonator 
2

2

2 kl tf
a

�� �� � �
 !

 and initial stress ratio 
0

zz

rG
�" � , respectively, 

where Gr is the shear modulus of the rubber layer. The reason of choosing shear 

modulus of the rubber layer as the reference of initial stress is that shear modulus of the 

rubber layer is the critical buckling stress of the 2D periodic foundation for out-of-

plane waves. 

Figure 2 shows the attenuation zones and dispersion curves with various 

parameters, where (a) 1 0.25f � , 2 0.5f � , 2 ma �  and 0" � , (b) 1 0.25f � , 

2 0.5f � , 1.5 ma �  and 0" � , (c) 1 0.5f � , 2 0.5f � , 1.5 ma �  and 0" � , and (d) 

1 0.5f � , 2 0.5f � , 1.5 ma �  and 0.4" � . Gaps between dispersion curves in figure 

2 are the so-called band gaps or AZs, whose range is from the lower bound frequency 

(LBF) to upper bound frequency (UBF). It can be found that the bigger the side length 

of the unit cell is, the narrower and lower the 1st AZ is, by comparing figure 2(a) with 

figure 2(b). By comparing figure 2(b) with figure 2(c), it can be found that the larger 

the filling ratio of core is, the higher and wider the 1st AZ is. By comparing figure 2(c) 

with figure 2(d), it can be found that the initial stress shifts the 1st AZ to lower 

frequency and narrows the 1st AZ. 

The above comparing process is the typical parametric analysis process, where 

only one parameter is changed at a time with the rest of parameters keeping unchanged. 

Thus, it cannot manage to investigate the interactions and relative importance of the 

parameters in determining the 1st AZ. 

Table 1. Material parameters 

Materials Mass density 
ρ (kg/m3) 

Poisson ratio 
v  

Young modulus  
E (GPa) 

 1300 0.463 1.37×10-4 

 Steel 7850 0.330 210 
Concrete 2300 25 0.330 

 

Figure 2. Dispersion curves and attenuation zones. 
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3.1. Global Sensitivity Analyses of the 1st AZ 

Four parameters are used in the global sensitivity analyses, as listed in table 2. The 

ranges of these parameters are set so that the most acceptable size and initial stress of 

foundations in practice can be included. Two response functions of the LBF and UBF 

were used to characterize the 1st AZ. 

The 1st two order Sobol’ indices of the LBF are calculated by different numbers of 

grid points, as shown in figure 3. It can be seen from figure 3 that the Sobol’ indices of 

LBF converge for 5N � , which verifies that the convergence of the present method is 

fast. Figure 4 shows Sobol’ indices of the LBF of the 1st AZ by ranking. Moreover, the 

accumulated values of Sobol’ indices are calculated. From figure 4, it can be easily 

found that the filling ratio of resonator is the most important parameter in determining 

the LBF of the 1st AZ while the periodic constant and filling ratio of core have 

relatively moderate importance. Moreover, the interactions of the four input parameters 

are negligible while the sum of the first order Sobol’ indices accounts for 98.9% of the 

total variance. 

Figure 5 shows the 1st two order Sobol’ indices of the UBF calculated by different 

numbers of grid points. Figure 6 shows accumulated values in sequence and Sobol’ 

indices of the UBF by ranking. From figure 6, it can be found that the filling ratio of 

core is the most important factor in determining the UBF of the 1st AZ, which is 

followed by the periodic constant, filling ratio of resonator and initial stress ratio. 

Moreover, the interactions of the four input parameters almost have no effects on the 

UBF of the 1st AZ. 

Table 2. Parameters used in the global sensitivity analyses 

Parameters Range of parameters Sobol’ index 

Filling ratio of core (

2

1
2 k

lf
l t

� �
� � �� !

) [0.2, 0.6] S1 

Filling ratio of resonator (

2

2

2 kl tf
a
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 !

) [0.2, 0.6] S2 

Periodic constant (a) [1.5, 2.0] m S3 

Initial stress ratio (

0

zz

rG
�" � ) [0, 0.8] S4 
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Figure 3. 1st two order Sobol’ indices for the LBF. 
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Figure 4. Ranking of Sobol’ indices for the LBF. 
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Figure 5. 1st two order Sobol’ indices of the UBF. 
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Figure 6. Ranking of Sobol’ indices of the UBF. 

3.2. Fitting Equations 

Sobol’ functions F0, F1, F2, F3 and F4 are used to estimate the LBF of the 1st 

AZ, which leads to 98.9% confidence according to figure 4. Figure 7 shows the 

Sobol’ functions F1, F2, F3 and F4 and their corresponding fitting curves. From 

figure 7(a), it can be found that F1 increases as the filling ratio of core increases. 

In figures 7(b), (c) and (d), monotonically decreasing trend of F2, F3 and F4 can 

be observed, respectively. The fitting function of the LBF of the 1st AZ has the 

form of 

0 1 2 3 4+ + + +LBF LBF LBF LBF LBF LBFF F F F F F#
, (7) 

where 
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(d) 

Figure 7. Sobol’ functions (a) F1, (b) F2, (c) F3 and (d) F4 of the LBF of the 1st AZ. 

F0, F1, F2, F3 and F4 are used to approximate the UBF of the 1st AZ, which leads 

to 98.8% confidence according to figure 6. The fitting function of the UBF of the 1st 

AZ can be expressed as 

0 1 2 3 4+ + + +UBF UBF UBF UBF UBF UBFF F F F F F#
, (9) 

where 

0

2

1 1 1
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2 2 2 2
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=7.3903

11.7840 1.3500 2.5819

32.9644 54.9942 31.5384 5.7215
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2.068 0.8433 1.0486 0.5036
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4. Conclusions 

The global sensitivity analyses of the AZs of 2D periodic foundations is conducted. It 

should be noted that the proposed method is general and applicable to various types of 

sensitivity analysis problems in a similar way. By investigating global sensitivity of the 

upper bound frequency and lower bound frequency of the 1st AZ considering four 

input parameters within the range in table 2, the following conclusions can be drawn: 

1) The Gauss-Lobatto integration converges fast, which makes it a promising 

global sensitivity analysis method due to its higher accuracy and lower computational 

cost. 

2) The filling ratio of resonator is the most important parameter in determining the 

LBF of the 1st AZ while the periodic constant and filling ratio of core have relatively 

moderate importance. The filling ratio of core is the most important parameter in 

determining the UBF of the 1st AZ, which is followed by the periodic constant, filling 

ratio of resonator and initial stress ratio. 

3) The interactions of the initial stress ratio, filling ratio of core, filling ratio of 

resonator and periodic constant and can be negligible in determining the 1st AZs of 2D 

periodic foundations. 
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