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Abstract. This paper presents an approach for optimizing floor plans using data 
collected from workplaces and a physics-based planning algorithm utilizing GPU-
acceleration. The approach is compared to two approaches based on Genetic 
Algorithms and Particle Swarm Optimization. Common objectives, such as 
minimizing distance between related departments and daylight usage are optimized 
using the physics-based method in a case study of an actual plot and company. The 
results show that the physics-based approach is very efficient at handling large 
amounts of rooms compared to the other methods tested. 
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Introduction 

Designing a residential or office building is a complex task, with many constraints and 
objectives that need to be fulfilled. The requirements come from technical regulations, 
economical considerations, and workplace efficiency and experience. As regulations and 
budgetary concerns are often prioritized, the human factors in floor planning are 
frequently overlooked. To solve this, and to handle the complexity of the design task, 
computational tools may help. This paper presents a method for efficiently designing a 
workplace floor plan based on collected data from employees, and constraints such as 
the outer boundary of each floor. 

Generating and optimizing floor plans has been studied at least since the 1970s [1], 
however, there have been few, if any, attempts to generate them using a physics-based 
approach. Physics-based form finding has previously been successful in other areas [2], 
which is why the approach may be interesting for floor planning as well. Rigid body 
physics and spring based constraints have many properties that make them interesting 
from a layout point of view as they deal naturally with the interaction of two and three 
dimensional objects. First, they efficiently prevent overlapping geometry in two and 
three dimensions. Second, they efficiently handle location-based objectives, such as 
preferred locations and preferred neighboring objects/rooms. Third, they can efficiently 
be run on modern graphical processing units (GPUs) using highly parallelized algorithms.  

In this paper, a floor planning approach is presented that is based on Nvidias PhysX 
Flex platform for particle-based rigid and soft body physics through the Flexhopper plug-
in for Grasshopper and Rhinoceros. The optimization is based on actual data collected 
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on workplace efficiency and experience, such as area and adjacency requirements. This 
requirement data is handled by the physics-based method, resulting in a time-efficient 
way of positioning large amounts of offices in parallel on the GPU. The method is 
compared to two popular algorithms for design exploration: the Genetic Algorithm (GA) 
and Particle Swarm Optimization (PSO). The physics-based method is then applied to a 
case-study based on actual requirements and building envelopes. 

1. Related works 

1.1. Floor plan generation 

Floor planning has been an interesting optimization and generation problem since at least 
the 1970s when Eastman [1] did early work on automating floor planning through a rule-
based approach for sequentially filling the floor plan. More recent examples include Das 
et al [3] who use a tree-based partitioning of the boundary to fill grid-based outlines. 
Flack and Ross [4] use GA and a graph-based approach to evolve rectilinear floor plans. 
Rodrigues, Gaspar and Gomes [5] study energy efficiency of the floor plan using a two-
step approach, where a floor plan is first generated, and then optimized for energy 
efficiency. Among the approaches that utilize Grasshopper and GA is the work of Boon 
et al. [6] who use Grasshopper and the plug-in Galapagos to optimize floor plans. They 
generate floor plans in three dimensions and minimize the distance between the 
functional areas of the plan. 

Within computer graphics, there are also a number of publications that attack the 
problem, such as Merrel, Schkufza and Koltun [7] and Lopes et al. [8] who use graph-
based approaches to plan rectilinear boundaries and Tutenel et al. [9] who use a rule-
based algorithm for procedural generation of interiors. 

However, none of the above presented works applies a physics-based solver to the 
floor-planning problem, and none looks at completely arbitrary floor boundaries. While 
some works discretize an arbitrary boundary using a grid-based system [7][4], the 
methods do not work directly on the actual outline. Moreover, none of the works utilizes 
the GPU in finding solutions. 

1.2. Genetic Algorithm 

First presented by Holland and Goldberg [10][11], GA has been applied to a wide range 
of applications within building design [12], and has, as mentioned above, been used 
before in generating floor plans. The genetic algorithm emulates natural evolution by 
gradually improving the fitness of individuals in a population over several generations. 
Each individual represents one point in the search space, and is assigned a fitness based 
on how well it conforms to constraints and objectives. The most fit individuals are then 
selected to breed the next generation through cross-over and mutation operators. The 
specific GA implementation used in this paper is Galapagos, which is a 
Rhino/Grasshopper plug-in. 
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1.3. Particle Swarm Optimization 

PSO has been used for a large number of applications [13][14] including floor planning 
[15]. PSO is inspired by the motion of, for instance, birds, bees or fish and their ability 
to work intelligently as a swarm, even though each individual may only be acting 
according to simple rules. In PSO, each individual, or agent, adapts its motion through 
the search space according to its history, fitness and neighboring agents. By attractive 
forces to more optimal regions of the search space, the agents collectively move towards 
a global optimum. The specific PSO implementation used in this paper is Silvereye, 
which is a Rhino/Grasshopper plug-in. 

2. Description of the implementation 

2.1. Workplace efficiency and experience 

In order for the results of the floor plan generator to be meaningful, real-life objectives 
and constraints are required. One way of collecting these is by analyzing an existing 
workplace through interviews, surveys, location based trackers, video recording, etc. 
Such data can be analyzed and converted into physical requirements, such as number, 
size and type of rooms, which functions need to be close to each other, etc. Other 
requirements in terms of building codes, such as minimum daylight intake and 
accessibility can also be added. In this paper, the following requirements have been 
implemented and are taken into account by the algorithms presented: 

� Area of room 
� Type of room 
� Number of rooms of a certain type 
� Distance to daylight 
� Distance to preferred neighboring functions 
� Accessibility 
� No overlapping rooms 
� No rooms outside the perimeter of the floor 

2.2. Physics-based requirements 

Some requirements can be fulfilled simply through generating rigid bodies with the 
correct geometry. However, other requirements need to be represented as forces to enable 
a physics-based optimization algorithm. Forces include, but are not limited to, user-
defined force fields such as point sources, wind, gravity; contact forces between moving 
and static objects; frictional forces; and forces generated by springs. A summary of how 
the different requirements were represented is shown in Table 1. 

Table 1. List of requirements and their physics-based representation 

Requirement Representation 
Area of room Geometry 
Type of room Geometry 

Number of rooms of a certain type Geometry 
Distance to daylight Force field 

Distance to preferred neighboring functions Springs 
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Accessibility Contact forces and force field 
No overlapping rooms Contact forces 

No rooms outside the perimeter of the floor Contact forces 

 

2.3. Time-dependent constraints 

As applying all force-based requirements at once would result in a sub-optimal solution, 
where objects do not have enough time to find their optimal positions before being 
entangled or forced into sub-optimal positions by other objects, a time-dependent 
approach is needed. The time-dependent approach applies physics-based requirements 
one at a time. For instance, during the initial stage the rooms are allowed to move freely 
on the floor plan and are only constrained by the neighboring springs, the floor surface 
and gravity. This enables the rooms to find their neighbors without any pre-positioning, 
other than a random scatter at the beginning. The time-line of the approach is shown in 
Table 2. After a requirement has been activated, it remains active throughout the time-
line. 

Table 2. Time-line of the requirements 

Requirement Sequence 
Area of room 0 
Type of room 0 

Number of rooms of a certain type 0 
Distance to preferred neighboring functions 1 

No overlapping rooms 1 
Distance to daylight 2 

No rooms outside the perimeter of the floor 2 
Accessibility 3 

2.4. Platform 

The rigid body physics simulation is implemented through the Nvidia PhysX Flex 
software library, which enables rigid body physics to be simulated on Nvidia GPUs. This 
approach enables massive parallelization of the simulation and orders of magnitude 
faster simulation times compared to CPUs at a comparable price point. The PhysX library 
was interfaced through the Flexhopper plug-in for Grasshopper, which, in turn, is a 
scripting plug-in for the CAD-tool Rhinoceros by McNeel. This enables the definition of 
geometry such as floor perimeter and office rooms in Rhinoceros’ standard CAD 
interface, and the algorithmic scripting of Flexhopper through Grasshopper. As Rhino 
provides a familiar CAD interface, this platform is intuitive to use for an Architect. 

2.5. Set-up 

The scale of the model is in meters, to better work with the default physics settings and 
numerical limits of the calculations. An artificially high gravity of 350 m/s2 was used to 
ensure that the blocks representing the rooms remained in contact with the floor during 
the simulation. A particle radius of 0.4 m was used. The same radius was used for the 
Solid Rest Distance and Collision Distance setting, which determines the minimum 
distance between solids. A Particle and Shape collision margin of 0.5 m was used. A 
maximum speed of 3.4028e38 m/s and a maximum acceleration of 1000 m/s2. All the 
remaining rigid body physics settings were set to 0, except Relaxation Mode, which was 
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left at the default value of True, and Relaxation Factor, which was left at the default value 
of 1. 

The springs between the rooms were connected to the center of gravity for each 
room and had a spring stiffness of 0.05 and a rest length of 0 m. 

The force field that attracts bodies to the outside perimeter was represented as a 
number of point attractors spread out at equal distances along the perimeter with a 
strength linearly changing from 100 to -100 throughout the simulation time-line, with a 
positive value indicating a repulsive force and a negative an attractive force. 

To ensure accessibility, a wall offset from the outside perimeter by the width of the 
rooms and with the thickness of the required corridor was introduced at the last stage of 
the simulation to force the rooms to leave a void. The corridor was introduced from 
below the floor to lift up and displace the offending rooms. The corridor initially had a 
repulsive force field attached to it to force rooms away from it. During the last stage of 
the simulation, the repulsive force was replaced with an attractive force to pull the rooms 
to it. 

3. Benchmark 

The physics-based method was benchmarked against two commonly used methods for 
design optimization, GA and PSO. The benchmark consisted of a simple outer boundary 
and a number of rooms to be placed. The objectives were to keep rooms inside the outer 
boundary, to avoid overlapping rooms, and to place the rooms as closely to each other as 
possible. To compare how the methods perform with the complexity of the problem, two 
configurations were run: one with 10 rooms, and one with 100 rooms. 

3.1. Set up 

The rooms are set up as rectangles with random widths and lengths between 1 and 2 m. 
Each room is given a random initial position, but within the outer boundary. 

The parameters for the GA and PSO methods are the x/y offsets from the initial 
position, represented as floating point numbers. The initial value for each parameter is 
set to 0 m. The parameter intervals are set to -30 m to 30 m, which allows the rooms to 
be moved just outside the perimeter. 

All methods were constrained to a run-time of 1.5 minutes for the 10-room 
benchmark, and 15 minutes for the 100-room benchmark. While this does not ensure 
convergence of the result, the difference in efficiency between the methods should be 
possible to determine. 

As Silvereye and Galapagos do not support separate constraints or multiple 
objectives, the goal functions are weighted into a single objective function that is to be 
minimized. 

Rooms outside of the outer boundary are penalized by adding the number of rooms 
that are outside the outer boundary, noutside, and normalizing the value by dividing by the 
total number of rooms, n, as described by Eq. 1. 

  Eq. 1 

The number of overlapping rooms is penalized by counting the number of 
overlapping rooms, noverlapping, and normalizing the value by dividing it by the total 
number of rooms, as described by Eq. 2. 
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  Eq. 2 

The objective to bring the rooms as close together as possible is measured by the 
total distance between the rooms and normalizing the value by dividing it by a reasonable 
estimate of the maximum possible distance between the rooms and the number of 
distance comparisons, as described by Eq. 3. 

 

 

Eq. 3 

The weighted objective value used by the GA and PSO methods, fweighted, is simply 
the sum of all objective functions divided by the number of them, as described by Eq. 4. 

 
 

Eq. 4 

PSO settings: Iterations 100, max velocity 0.200, swarm size 20. 
GA settings: Max stagnant 50, Population 50, Initial boost 2, Maintain 5%, 

Inbreeding 75%. 

3.2. Results 

The results for the benchmark run with 10 and 100 rooms are presented in Figure 1 and 
Figure 2 respectively. The fitness reported in the figures is based on fweighted from Eq. 4. 
A visual representation of the results for the methods is presented in Figure 4. It is 
evident that the physics-based method converges on a result very quickly compared to 
the two other methods. The difference in convergence rate is even more evident in the 
100-room benchmark. The PSO method seems to be more suited to this particular 
problem than GA. 
 

Figure 1. Fitness over time for the three methods 
while optimizing the placement of 10 rooms. 

Figure 2. Fitness over time for the three methods 
while optimizing the placement of 100 rooms. 
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Figure 3. A visual representation of the optimization results for the three methods. 

4. Case study 

A floor plan for an office space in the H+ area of Helsingborg, Sweden was used as the 
starting point, see Figure 4. Workplace data from WPA for an anonymous company was 
used as a basis for the requirements. Based on this data, geometries for the different 
rooms and their preferred neighboring functions were input.  

 

 
Figure 4. Plan for the area specified for the case study, with the building footprint marked in red (courtesy of 

Helsingborg Stad and Superlab) 
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Enabling requirements one after another, the results shown in Figure 5 are achieved. 
Initially, only the accessibility, perimeter and no overlap requirements are enabled, as 
shown in  Figure 5a. In the  Figure 5b, the proximity requirements are enabled, resulting 
in the two groups of rooms to cluster together. In Figure 5c, the proximity to the outer 
perimeter requirement is enabled. The algorithm was then applied to several floors of the 
building, with the results presented in Figure 6. 

 
Figure 5. Rooms placed within the boundary. The rooms are color-coded based on the department they 

belong to. 

 
Figure 6. The physics-based algorithm applied to several floors in a building. 
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5. Conclusions 

This paper has demonstrated that physics-based floor planning is a viable method for 
quickly and efficiently determining the optimal position of rooms within an outer 
boundary. With the given constraints and objectives described in this paper, the physics-
based method outperformed popular methods such as GA and PSO. It should be noted, 
however, that the convergence rate of stochastic methods like GA and PSO will vary 
slightly depending on the initial random seed and more independent runs would be 
needed to statistically compare the methods. 

While physics-based optimization is promising in its efficiency, there are limitations 
to its usability. Mainly, the challenge lies in being able to represent objectives and 
constraints as physical forces. 
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