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Abstract. Unplanned maintenance is a costly factor in aircraft operations. Predictive 

maintenance models aim to provide greater insight into future component and 
system behaviour. In the state of the art, a variety of statistical models and machine 

learning techniques, amongst others, are used to estimate component remaining 

useful life. These approaches commonly leverage technical information, such as 
sensor data. However, the use of data and techniques from other domains is not 

prevalent. One such example is the application of natural language processing to 

incorporate textual information, e.g. derived from pilot complaint data. In other 
words, does the presence and specific content of pilot complaints have potential to 

improve the predictability of component removals? In this research, data integration 

and processing from multiple disciplines are combined to address this question. 
Relevant words from pilot complaints are identified using a term frequency–inverse 

document frequency (TF-IDF) numerical analysis, after which the most relevant 

words are used as covariates in a proportional hazards model. Left truncation and 
right censoring is applied to limit the time-invariant nature of these covariates. The 

results in the form of hazard ratios indicate a hazard increase of several orders of 

magnitude with respect to baseline hazard, pointing towards potential value of 
including these words as predictive parameters.  

Keywords. Predictive Maintenance, Natural language processing, Proportional 

Hazard Models 

Introduction 

In aviation, maintenance plays a crucial role in ensuring continued aircraft airworthiness, 

allowing for safe operations of worldwide aircraft fleets. Beyond safety, maintenance 

also is crucial in determining the economic feasibility of aircraft operations; the right 

level of maintenance will prevent unscheduled and costly interventions, while allowing 

for smoothly aligned scheduled interventions. To enable this, insight into when an 

aircraft – or more typically, one of its systems or components – will fail is key. The field 

that studies the remaining lifetime of an object is known as survival analysis in general, 

and usually referred to as reliability analysis in engineering applications. Scientists and 

practitioners in this field have come up with a variety of statistical models to give insight 

into remaining life-time. A substantial part of these models are parametric, such as the 

Weibull distribution [1]. Where more flexibility is required, non-parametric models such 
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as the Kaplan-Meier Estimator [2] can be employed. Though many models are univariate, 

a subset of models allow for a multivariate approach to survival analysis, like the semi-

parametric Proportional Hazards Model, or Cox model after its inventor Sir David Cox 

[3], which has been applied predominantly in healthcare, with some examples in the 

engineering domain [4]. In such applications, operational parameters or physical 

parameters such as engine oil condition [5] are typically used. In more recent research, 

machine learning techniques are employed to leverage the sharply increasing availability 

of sensor data to more fully understand component deterioration and failure, as part of 

the fields of predictive maintenance and prognostics. 

Despite these advances, one could argue that the most comprehensive sensor of them 

all, the pilot, has been overlooked as a source of data for research purposes. The pilot 

produces information in the form of natural language which is captured in pilot reports 

and pilot complaints. This information has significant potential not only for use in airline 

operations and maintenance (where this potential is largely realised through current-day 

regulations, procedures and processes), but also for predictive purposes. Through the 

application of natural language processing to incorporate textual information derived 

from pilot complaint data, it may be possible to provide improved predictability 

regarding upcoming component failures. In other words, does the presence and specific 

content of pilot complaints have the potential to improve in-service performance? In this 

research, data integration and processing from multiple disciplines are combined to 

address this question in the form of a proof-of-concept approach. 

This is an example of where it is necessary and valuable to consider the inclusion of 

methodologies and stakeholders from multiple disciplines. As such, the problem at hand 

provides an example that falls under the banner of transdisciplinary research. In 

particular, several essential characteristics of transdisciplinarity are met by the problem 

at hand, namely 1) a process that starts from a real-world problem; 2) collaboration 

between and contribution of knowledge from different disciplines; 3) a shared 

overarchting goal from research and practice [6-8].   

In summary, the purpose of this research is gauge the usability of the pilot 

complaints as an external source of data, and thereby test the applicability and effect of 

using textual information to improve reliability estimation. The structure of the 

remainder of this paper reflects this focus. First, the approach employed to tackle this 

problem is discussed in more detail in Section 1. Subsequently, this approach is applied 

towards a dataset comprising component removals and associated pilot complaint data. 

Section 2 discusses the characteristics of the dataset and the subsequent implementation 

of the approach, as well as the results. Finally, conclusions and recommendations for 

future research are given. 

1. Methodology 

To tackle the inclusion of pilot complaint information within component failure 

prediction, the methodology as set out in Figure 1 is proposed. It comprises a number of 

distinct steps, which are discussed below, with attendant theoretical concepts being 

further explained where deemed necessary. 
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Figure 1. Methodological approach. 

� Data gathering: the necessary data for estimating component reliability must 

first be gathered. This comprises pilot complaints and component removal data. 

The prior contain the textual data which must be processed to gather relevant 

modelling covariates (see below). The latter is primarily quantitative data which 

can be used to calculate baseline reliability characteristics. Section 2 describes 

the specific datasets used in this research in more detail.  

� Pre-processing: before application in modelling and estimation, the data must 

first be pre-processed. For the component removal data, pre-processing involves 

cleaning, matching and selection of appropriate entries. More detail is again 

given in Section 2.  

To be able to use pilot complaint text as explanatory covariates within reliability 

models (see below), this text must first be converted to a numerical value. This 

pre-processing falls under the banner of natural language processing (NLP) [9]. 

In this research, pre-processing is performed using a basic natural language 

processing (NLP) technique, namely frequency-inverse document frequency 

(TF-IDF) as describes by Sparck Jones [10]. TF-IDF yields a measure of 

relevance for the processed text. In terms of the subject at hand, TF-IDF is used 

to score words based on how frequently they occur in the pilot complaints 

leading up to a removal, while correcting for its frequency in the entire corpus 

of pilot complaints. The scoring equation associated with the application of TF-

IDF in this study is expressed in Equation 1 below.  

 

 (1) 

With  being the score of term j in document i,  being the term frequency 

of term j in document i, N being the total number of documents in the corpus, 

and  being the number of documents that term j appears in.  

Model fitting: model fitting comprises the use of the pre-processed data to 

ensure two things: 1) modelling and estimating baseline reliability 

characteristics for comparative evaluation; 2) modelling and estimation 

reliability characteristics including the TF-IDF findings. With respect to 1), 

baseline reliability estimates are obtained by employing Kaplan-Meier 
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Estimators. The Kaplan-Meier Estimator, given below in Equation 2, is a 

method to estimate the survival function bases on (censored) lifetime data. As 

opposed to many statistical lifetime distributions, the Kaplan-Meier Estimator 

is non-parametric, meaning it does not adhere to a specific shape of distribution 

and therefore enjoys more flexibility. 

 (2) 

With  being the estimation of the survival curve,  being the time at which 

at least one removal occurs,  being the number of component removals, and 

 being the number of components that have not yet been removed.  

With respect to 2), to allow for the inclusion of explanatory covariates, the 

Proportional Hazards Model is employed [3]. The PHM model models survival 

time while taking into account the effect of one or more explanatory variables, 

or covariates. The PHM model assumes time-independent covariates but time-

dependent extensions are available in literature. In mathematical form, it can be 

represented as given in Equation 3. In this research, the main terms identified 

in the TF-IDF analysis are used as covariates within a PHM model (see Section 

2) while assuming time-independence.  

 (3) 

with  being the hazard function,  representing the baseline 

hazard,  representing the regression coefficients,  giving the covariate 

values, and  representing the covariates’ average values.    

� Results: application of Kaplan-Meier Estimators gives rise to estimated 

survival curves, representing reliability behaviour without incorporating the 

effect of pilot complaint-derived explanatory variables. In constrast, the PHM 

model output yields hazard ratios, which quantify the positive or negative 

influence of explanatory variables on the component hazard function (i.e., the 

instantaneous probability of failure).  

The methodological approach is implemented and applied in a case study as 

described in Section 2.  

2. Case study 

To investigate whether the inclusion of textual information (in the ‘raw’ form of pilot 

complaints) could be used to improve reliability estimation and prediction, a case study 

has been carried out on the basis of a dataset provided by an independent Maintenance, 

Repair and Overhaul (MRO) organisation. For confidentiality reasons, the company is 

not identified. The dataset in question is described in more detail below. Modelling 

assumptions and application of the modelling approach is briefly discussed before 

moving towards the results for a specific component within the broader dataset, which 

serves as an example of the opportunities and pitfalls of applying the approach as 

proposed in Section 1.  
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2.1. Dataset characteristics 

The involved maintenance service provider has performed maintenance activities across 

multiple airlines, aircraft manufacturers and aircraft types. Records are kept of all 

parameters relevant to the technical state of the aircraft and span a period of time from 

1987 – 2016.  

The relevant subsets within the overall dataset concern component removals and 

pilot complaints respectively, as they form the main source of information for further 

analysis. The relations between these two tables are depicted in Figure 2. Each data entry 

has a unique identifier (primary key), being the ”CompId” for a component removal and 

a ”PilotId” for pilot complaints. Both tables have the ”AircraftSerialNumber” as foreign 

key, being the entry used to link the data entry to a data entry in a foreign table. The most 

important information the data is the ”Date”, as insight into the date of a component 

removal is crucial towards reliability modelling. 

 

Figure 2. Primary datasets and attributes. 

The component removals dataset spans a total of 476262 unique entries, whereas the 

pilot complaints comprises 428737 entries. However, not all of the data is suitable for 

further analysis as several issues contribute to significant dataset cleaning. The major 

three issues are 1) the appearance of non-English entries, where it has been decided to 

keep other languages than English out of the analysis to not complicate the NLP efforts; 

2) absent aircraft serial numbers, where data entry has not been complete and therefore 

precludes linking specific component removals to specific pilot complaints; 3) quality of 

pilot complaint data, where the dataset has been constrained to post-2010 entries given 

that prior pilot complaint entries were sparsely and inconsistently captured. 

In terms of NLP application, the pilot complaints that have been evaluated are 

typically comprised of sparse, keyword-like entries, sometimes including one or two 

brief sentences covering operational observations. To parse this information, entries have 

been made case-insensitive, with punctuation removed from textual entries. Furthermore, 

several synonyms (e.g. a/c, aircraft, airplane, etc.) have been merged into the analysis.  

After cleaning, the datasets have been further reduced to enable a well-scoped, 

consistent data representation for use in analysis. The main steps here have been to 

constrain the datasets to occurrences from a single airline, within a single aircraft type, 

and selecting a top-five of components in terms of frequency of removals to arrive at a 

feasible scope of analysis. The results of the cleaning and reduction processes are given 

in Tables 1-2, with Table 3 providing an overview of the selected components and their 

removal numbers.  

Table 1. Size of component removal data after various filtering and sampling steps. 

 Component removals Relative Absolute 
Raw 476.262 100% 100% 

Filter dates 132.351 28% 28% 

Missing registrations 102.451 77% 22% 
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Sample airline 21.761 21% 5% 

Sample type 20.222 93% 4% 

Sample components 3.101 15% 0.65% 

 

Table 2. Size of pilot complaint data after various filtering and sampling steps. 

 Component removals Relative Absolute 
Raw 428.737 100% 100% 

Filter dates 299.212 70% 70% 

Missing registrations 295.746 99% 69% 

Sample airline 96.951 33% 23% 
Sample type 89.986 93% 21% 

 

Table 3. Selected components (by frequency of removals). 

Name Description Removals 
Component 1 Oxygen bottle 2516 

Component 2 Flow control valve 207 
Component 3 Display unit 196 

Component 4 Pressure Regulating Shut-off Valve 194 

Component 5 Landing Light 176 

2.2. Model assumptions and application 

The main assumption to consider in the Proportional Hazards Model is explicitly part of 

its name. The hazard is assumed to be proportional to the baseline hazard. Equation 3 

shows that the partial hazard merely scales the baseline hazard. Another assumption that 

follows from the model definition and the proportionality assumption is the fact that the 

effect a covariate has on the baseline hazard is constant in time. This last assumption is 

challenging regarding the nature of this research, since information from pilot complaints 

is very time-variant. Information is presented at some moment in time while being 

unknown before, and this information might become less relevant in time. This 

phenomenom is further illustrated in Figure 3, which depicts the situation where the birth 

is defined as the moment of installation of a component. The information in the pilot 

complaints is added somewhere between birth and death, death being the moment of 

component removal. It is evident that this information was not yet known before the 

onset of the pilot complaint. The covariate representing the pilot complaint or its content 

is therefore time-variant. Figure 4 shows the situation where the birth moment coincides 

with the onset of the pilot complaint. The information presented in the pilot complaint is 

known during the entire timeline and conceptually is not in violation of the 

proportionality assumption. The birth is therefore defined as the onset of each pilot 

complaint.  

 

Figure 3. Moment of installation as birth. 

 

Figure 4. Moment of pilot complaint as birth 
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 For each pilot complaint, the values of the following covariates are determined. The 

covariates consists of endogenous covariates and exogenous covariates. The former 

originate from the component removal data itself (and comprise variables “Year”, “Fresh” 

and “Summer”), while the latter originate externally from the pilot complaint data. The 

following list give an overview of the covariates used in this research: 

� Year: The year of complaint can gauge the effect time has on the hazard ratio. 

� Fresh: This covariate has a value of 1 when the previous component removal 

was within two months of the pilot complaint under consideration. This is used 

to judge whether a recent installation has an effect on the hazard. 

� Summer: This covariate has a value of 1 when the pilot complaint falls within 

the airline summer schedule and is used to discern any seasonality effects. 

� PN: This covariate has a value of 1 if the part number is mentioned in the 

complaint text. This is used to analyze the lifetime patterns when it is known in 

advance that a removal will occur due to the pilot complaint in question, in 

effect serving as a validation set.  

� ATA: This covariate is used to determine the effect that mentioning the specific 

subsystem has on the hazard. 

� word:*: This covariate has a value of 1 if the word represented by the asterisk 

is mentioned in the pilot complaint. This is used to measure the effect of certain 

words on the hazard.  

2.3. Results 

The TF-IDF complaint processing, Proportional Hazard Model and Kaplan-Meier 

Estimators have been applied to the selected 5 components (see Section 2.1). Here, some 

in-depth results are presented for component 5: landing light, as a representative case. 

Findings for the other components are briefly summarized at the end of this section.  

The TF-IDF analysis for component 5 is represented in Table 4. It is clear that words 

that are functionally related to aircraft landings feature highly in the output. In this 

example, and in general as well, term relevancy quickly tapers off, indicating that 

specific words are relatively dominant in specific complaints. 

Table 4. Overview of TF-IDF scores for Component 5: Landing Light. 

Word TF DF Score 
Landing 30 3147 27.78 

Extended 7 161 27.35 

Retract 16 548 21.03 
Lh 34 8061 20.28 

light 5 20993 20.03 

 

Results for the endogenous covariates are shown in Figure 5 and Table 5. It is clear 

that having information on the ATA chapter improves reliability estimation through the 

adjusted hazard rate - ATA scales the baseline hazard by 60% while being statistically 

significant. The same is true for the variable “year”, though the effect is reversed and 

less pronounced in size. 
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Figure 5. Forest plot of hazard ratios of Proportional Hazards Model fit of Component 5: Landing Light. 

Table 5. Summary of Proportional Hazards Model characteristics for Component 5: Landing Light. 

Endogenous 
variable 

Coefficient Exp(coefficient) p-value Proportionality 
assumption 

ATA 0.47 1.60 <0.005 Met 

Fresh 0.04 1.04 0.59 Met 

Summer -0.04 0.96 0.45 Met 
Year -0.11 0.90 <0.005 Met 

 

Results for the exogenous covariates, i.e., the application of the Proportional 

Hazards Model for the four best scoring words in the TF-IDF analysis for this part, are 

shown in Figure 6. Note that the analysis for the word ”extended” is missing, due to 

excessive multicollinearity. Of the words, ”lh” misses statistical significance. The 

word ”retract”, although statistically significant, has a large standard deviation, as shown 

by the wide whiskers. The word ”landing” is the best performing word in this analysis, 

showing a hazard ratio of almost three, while being statistically significant and respecting 

the proportionality assumption. 

 

Figure 6. Forest plots of hazard ratios of Proportional Hazards Model fit of Component 5: Landing Light for 

different words. 
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Finally, Figure 7 shows a comparison between the Kaplan-Meier Estimator (KME), 

the  adjusted hazard rate using the best-scoring word (“landing”) and having the part 

number mentioned in the retrospectively added action in the pilot complaint. The latter 

is for validation purposes and shows the maximum predictive signal that one could obtain 

in a perfect world from textual entries. It is noticeable that including the word landing 

gives a slightly improved prediction of future failure behaviour, but does not come close 

towards full failure predictability as implied by having all information on complaint 

initiation, troubleshooting and resolution.  

 

Figure 7. Comparison between Kaplan-Meier Estimator (baseline survival curve), KME with Part Number 

indication, and Proportional Hazards Model for Component 4: Landing Light for Word:landing. 

Extending this analysis to other components shows similar patterns. For several 

components, the presence of multicollinearity precludes obtaining reliable results for 

specific words, but in general, the analysis of specific words in pilot complaints adds 

some increased predictability for component removals. However, the full potential of 

natural language processing of pilot complaints for forward-looking purposes is limited, 

unless the complaints are more detailed or incorporate maintenance troubleshooting 

information as well.  

2.4. Discussion 

Other situational factors may be at play which can further enrich the analysis provided 

here. For instance, the type, severity and frequency of complaints (especially in closely-

spaced sequences) may help to distinguish slow- and fast-moving deterioration of 

components. Additional sources of textual information (such as maintenance inspection 

and shop findings) may further enhance reliability estimation by correlating pilot 

complaints with detailed characteristics (such as observed failure modes) associated with 

component removals, though sample sizes may be too small to find statistically 

meaningful results. 

In terms of in-service implications, one critical aspect may be to consider the benefit 

of having an ‘early-warning’ function through real-time analysis of incoming pilot 

complaints. From this perspective, a knowledge-based diagnostic capability may be 

constructed by matching pilot complaints (or other sources of textual information) with 

prior cases and associated maintenance tasks. 
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3. Conclusions and recommendations 

This research has presented a successful proof of concept, highlighting the potential use 

of textual information to enrich and improve reliability estimation. The hazard ratios 

resulting from the Proportional Hazards Model provide strong evidence for a statistically 

significant effect the information from the pilot complaint has on the hazard of a 

component removal. This effect however, is measured with respect to the baseline hazard. 

While the hazard in some cases increases more than sevenfold, one must also consider 

the absolute effect this has on the expected ”mortality”, which is severely limited by the 

short period under observation (in order to preserve time-independence). Furthermore, 

the limited descriptive content in the pilot complaints and the very simple NLP approach 

tested here do not provide deep insight into predicting towards future removal events.  

These limitations can be addressed to some extent by considering more advanced 

NLP techniques in analyzing textual information that may be relevant towards 

component removals, especially techniques that (automatically) group synonyms or 

syntactically similar words. Furthermore, the major assumptions that had to be made 

with respect to time-invariant behaviour could be resolved by considering time-variant 

proportional hazard models. However, this would come at the cost of computational 

performance.  
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