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Abstract. Synthetic datasets have been used to train 2D and 3D image-based deep 
learning models, and they serve as also as performance benchmarking. Although 

some authors already use 3D models for the development of navigation systems, 

their applications do not consider noise sources, which affects 3D sensors. Time-of-
Flight sensors are susceptible to noise and conventional filters have limitations 

depending on the scenario it will be applied. On the other hand, deep learning filters 

can be more invariant to changes and take into consideration contextual information 
to attenuate noise. However, to train a deep learning filter a noiseless ground truth 

is required, but highly accurate hardware would be need. Synthetic datasets are 

provided with ground truth data, and similar noise can be applied to it, creating a 
noisy dataset for a deep learning approach. This research explores the training of a 

noise removal application using deep learning trained only with the Flying Things 

synthetic dataset with ground truth data and applying random noise to it. The trained 
model is validated with the Middlebury dataset which contains real-world data. The 

research results show that training the deep learning architecture for noise removal 

with only a synthetic dataset is capable to achieve near state of art performance, and 
the proposed model is able to process 12bit resolution depth images instead of 8bit 

images. Future studies will evaluate the algorithm performance regarding real-time 

noise removal to allow embedded applications. 
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Introduction 

Human beings rely on their eyes to navigate through complex scenarios and avoid 

obstacles. When someone suffers from low-vision or blindness, their navigation ability 

gets compromised. Machines, on the other hand, uses a camera and other types of sensors 

to be able to perform autonomous navigation tasks. Differently from our eyes, sensors 

are not adaptable to complex lighting. Due to manufacturing limitations these sensors 

interpret some of these complex conditions as noise, causing autonomous navigation to 

work similarly to blindness or low-light vision. 

Autonomous navigation applications require devices that are capable to extract data 

from the environment and transform them into a valid path. There are three main 

technologies that use computer vision to perform 3D reconstruction of the environment: 

stereo vision, Time-of-flight (ToF) camera, and LIDAR. ToF and LIDAR use logic 

similar to a sonar, but with a modulated near-infrared light. The stereo vision uses a pair 
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of calibrated cameras and through epipolar constraints measure distance by matching the 

corresponding pixels from one image to the other. Stereo vision is usually cheaper, but 

is a more software-intensive task and requires great computational power to process the 

depth image, with the most accurate algorithms taking up to minutes to process a single 

pair of images and faster algorithms perform poorly on textureless regions. On the other 

hand, ToF cameras process everything in hardware, needing less computational power 

makes it a more attractive solution for embedded applications. Although LIDARs are 

more accurate and data processing is considerably fast, the acquisition cost is a huge 

limitation for several indoor applications or when a product requires production 

scalability. 

One of the challenges of these technologies is to evaluate their depth measurement 

from each equipment and compare them with ground truth data. Ground truth with real 

data depth images is harder to obtain because ToF and Stereo normally contain a high 

noise level and LIDAR requires intensive scanning to generate dense accurate data, 

otherwise it will sparse. Since LIDAR has the most reliable performance, it is used to 

generate ground truth information, but due to LIDAR technical limitations, the dataset is 

usually sparse. Kitti dataset[1] is one example of a sparse ground-truth dataset.  

Synthetic datasets become a very attractive solution to approach the lack of ground 

truth data, as the depth map generated is noiseless and dense, like on the Flying Things 

dataset [2]  used for train/test stereo matching methods. Deep learning models are usually 

trained with real-world data or a combination of real-world and synthetic data. Since ToF 

real-world data is hard to obtain, this paper proposes an architecture that is trained only 

with the Flying Things synthetic dataset and the addition of synthetic Gaussian noise. 

The trained model is validated with the Middlebury dataset [3] which is a real-world 

source of the dataset. 

1. Technological background 

A ToF camera is an active sensor that uses the speed of light to calculate distance. The 

ToF camera mechanism measures the phase shift between the emitted modulated light 

and the received light which should be proportional to the distance between the emitter 

and the reflective object. 

1.1. ToF noise and common filtering techniques 

Like any other camera sensor, ToF camera is susceptible to undesirable effects like 

artifacts, unrealistic edges, blurred objects and disturbs background scenes caused by 

noise [4]. The source of noise can vary, as its statistical behavior, from the thermal 

vibration of the atom and discrete nature of radiation to the amplitude quantization 

process [5]. 

To attenuate the effect of noise, several traditional computer vision filters can be 

divided into two classes, spatial and temporal. Spatial filters use neighboring pixel values 

to filter noise. The most common are the mean, the median [6], and the bilateral filter [7]. 

However, temporal filters use the actual and past values of the same pixel to filter noise. 

The mean, the median, and the impulse response filter are the most common temporal 

filters. 
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Their effectiveness depends on the type of noise, but they all have disadvantages. 

Spatial filters are known to decrease image sharpness and temporal filters cause motion 

blur when objects are moving fast. 

Combined computer vision algorithms to filter noise can achieve good results and 

still maintain some image structural integrity, but they are tailor-made for specific 

environments and they lack the ability to adapt to other scenarios. Recent deep learning 

architectures that use an encoder-decoder module are being applied to image 

reconstruction and image denoising tasks. These architectures can achieve great 

denoising performance while keeping image integrity [8]. 

1.2. Deep Learning 

The base of all deep learning theory comes from the artificial neural networks which are 

made by a number of interconnected artificial neurons. The artificial neuron, as shown 

in Figure 1, perform a set of linear operations, equations, and then apply a non-linear 

behavior at the output signal using an activation function. 

 

 
Figure 1. Example of  an artificial neuron. 

A simple artificial neural network is a supervised algorithm, which needs a dataset 

with known inputs and desired outputs. Any network must have an input and output layer 

and a variable number of hidden layers, which will depend on the selected architecture. 

Through backpropagation and optimizing technics, like gradient descent, to adjust the 

weights and minimize the error between the output and the desired value. The deep 

learning term refers to a neural network which has a great number of hidden layers, and 

Convolutional Neural Network (CNN) is one specific type of deep learning architecture.  

CNNs refers to a neural network that uses convolution operations to extract features. 

The kernels used in the convolutions have the weights parameters embedded, in other 

words, the CNN learns which are the weight values for each kernel that extract features 

best. 

A large number of architectures were developed for different types of applications: 

segmentation, object detection, stereo matching, image completion, image creation, 

image denoising, and many others. The encoder-decoder architecture is commonly used 

to image denoising. U-Net[9] is an example that uses the encoder to compresses the 
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image into a latent space while reserving the primary components of objects in the image, 

thus eliminating noise. The decoder reconstructs the image from the latent space. 

One of the very first encode-decoder networks used for image restoration was RED-

Net [10] which showed that a deep learning model using downsampling and upsampling 

philosophy with convolutions, deconvolutions (transposed convolution) and skip 

connections can attenuate noise and still keep image detail. Some architectures also use 

shared parameters between convolutions and transposed convolutions of the same level 

[11, 12]. 

1.3. Synthetic Noise and Quality metric 

Deep Learning models are most likely to be trained with real colored/greyscale images 

with noise added artificially, usually, Gaussian distributed noise with the mean value 

equals zero. The same principle can be applied to depth images, however, instead of 8bit 

per channel depth maps are normally higher.  As deep learning is normally a supervised 

algorithm, the ground truth is needed, that is why the synthetic data for depth 

measurement is necessary as one of the most feasible ways to acquire noiseless images 

and also the reason why noise is added artificially.  

To measure an algorithm’s performance Peak Signal to Noise Ratio (PSNR) is a 

very common metric to validate the filter quality. PSNR (in dB) is defined as follows 

 

PSNR=10*log
10

MAXI
2

MSE
 (1) 

 Where MAX is the maximum possible intensity value.MSE is the mean squared 

error. The MSE function is also defined by: 

 

MSE=
1

m n
[I i,j -K i,j ]²

n-1

j=0

m-1

i=0

 (2) 

Where I(x,y) is the intensity value at pixel (x,y) in the noiseless image, k(x,y) is the 

intensity value at pixel (x,y) in the noisy image. 

2. Methodology 

One of the most important parts to train a deep learning model is the dataset selection. 

The desired aspects of the dataset are to be large, noiseless information, and a dense 

depth map, meaning that all pixels have a depth value. The dataset that checked all the 

aspects is the Flying things dataset which is selected for training and to test/validate the 

model the Middlebury dataset is selected. As those datasets are used in stereo matching 

tasks the ground truth is a disparity map but can be converted into depth map by using 

the following equation. 

To simulate real hardware, the distances are then normalized between 0 and 4095 

(where 4095 is 18m) to imitate a 12bit analog to digital converter. The equation to 

convert disparity values extracted from stereo matching datasets is: 
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     (3) 

Z is depth, f is focal length, T is the distance between cameras, and d is disparity 

value. 

 Like many papers did, the noise is added artificially by summing a random image, 

Gaussian distributed, with zero mean and 255 standard deviations. The Gaussian noise 

was kept to test and validate the approach, but if another type of noise distribution is 

detected in future studies, the proposed model can be adapted. 

3. Proposed Architecture 

In high-quality traditional stereo matching algorithms after the matching step, the 

computed disparity is further processed by optimizing it by minimizing an energy 

function. The equivalent method for a CNN implementation developed for stereo 

matching tasks is the regularization steps which, usually, consist of encoder-decoder 

architectures to enhance and refine the disparity map. Supposing that the image from a 

TOF camera can be enhanced with the same method we propose the usage of stacked 

UNets with skip connections similar to PSMNet [13], but with 2D convolutions and 

residual bottleneck blocks. The proposed architecture, Table 1, is built upon a BasicConv 

which is a sequence of 2D convolution, batch normalization, and Rectified Linear Unit 

(ReLU) activation function. 

Table 1. Proposed architecture. 

LAYER/BLOCK INPUT KERNEL 
BasicConv WxHx1 Size=3x3,Kernels=128, Stride=1 
BasicConv WxHx128 Size=3x3, Kernels=128, Stride=2 

BasicConv W/2xH/2x128 Size=3x3, Kernels=128, Stride=1 

Res_Unet W/2xH/2x128 Stride=2 
Res_Unet W/2xH/2x128 Stride=2 

Res_Unet W/2xH/2x128 Stride=2 

BasicConv W/2xH/2x128 Size=3x3, Kernels=128, Stride=1 
BasicConv W/2xH/2x128 Size=3x3, Kernels=128, Stride=1 

BasicDeconv W/2xH/2x128 Size=3x3, Kernels=128, Stride=2 

3.1. Implementation details 

All codes were developed in python 3.7 in a Ubuntu 16.04 machine, OpenCV 4.1 was 

used to load/manipulate images, and Pytorch 1.0.1 was used to build and train the CNN. 

The proposed network was trained with logcosh loss, adam optimizer, a learning rate of 

0.0001, and a batch size of 16. The loss function is given below: 

 

 (4) 

Where y is the ground truth value and yp is the predicted value. 

As the GPU memory is limited the images were cropped into smaller 92x92 patches 

to build the training batches. Also, all images were divided by 4095 to normalize them 

to values between 0 and 1. 

The training section was not enough to complete an epoch (going through the whole 

dataset), as the dataset contains more than 20000 960x540 images it would take too long, 
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and was trained for 13920 steps (about 4450 images). All training and validation were 

implemented on a Core i7 8750H, GTX 1050Ti 4GB with 16GB of RAM laptop. 

4. Results and discussion 

As described before, the Middlebury dataset was selected to validate the model 

performance. A total of 21 images were used for validation, similarly to the training step 

noise is added artificially by summing a random image following a gaussian distribution, 

however this time a seed was used to generate the same numbers, noisy images, making 

it fair to compare between checkpoints and to validate the model improvements during 

train season. Table 2 contains all the results with mean absolute error (MAE) in 

millimeters, MAE without considering the edges given in millimeters, PSNR in dB, and 

PSNR not considering the edges in dB. 

 
Table 2. Validation performance results. 

Image number MAE 
[mm]  

MAE without 
edges[mm] 

PSNR[dB] PSNR 
without edges 

[dB] 
0 757.8 553.0 23.5999 27.7506 
1 664.2 548.1 25.7641 28.8376 
2 604.8 527.7 27.1901 29.1806 
3 901.8 674.5 21.7431 25.2678 
4 606.6 487.4 25.6854 29.3118 
5 581.4 444.4 25.3539 28.9093 
6 603.0 576.1 27.9423 28.6548 
7 684.0 544.9 23.5617 26.5834 
8 610.2 520.8 25.7491 28.3964 
9 608.4 506.4 26.3715 29.1668 

10 831.6 523.2 21.9359 27.7333 
11 770.4 550.4 23.7021 27.9718 
12 781.2 586.3 24.1689 28.0893 
13 648.0 546.0 26.0417 28.8634 
14 676.8 569.0 25.0692 27.8267 
15 536.4 440.3 25.7491 28.8105 
16 583.2 499.3 27.0577 29.5701 
17 770.4 602.2 23.4323 27.3206 
18 835.2 646.2 22.9760 26.7951 
19 603.0 484.1 25.7382 29.6685 
20 680.4 546.4 25.2831 28.5535 

 
The general PSNR is 24.64dB and the general PSNR without edges is 28.11dB 

which performance is bellow when compared to other image denoise papers that achieve 

30dB, however, it is a preliminary result to validate the concept of using deep learning 

to denoise depth images with 12bit resolution. Figure 2 illustrates, the CNN does filter 

noise at the cost of the image’s structural integrity and shape. 
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Figure 2. Noisy Image Input (left), Filtered Image (middle), Ground Truth Image (Right). 

The decreased image output sharpness is probably caused by downsampling the 

resolution every time a convolution layer with stride 2 is used. This process reduces the 

required information for the reconstruction when a transposed convolution is operated, 

causing the blur effect in the output. The blur-like effect can be better observed in Figure 

3, which is the detailed image of the white box in Figure 2. 
 

 
Figure 3. Detailed Images: Noisy Image Input (left), Filtered Image (middle), Ground Truth (right). 

Subtracting the filtered image from the ground truth image and taking the absolute 

value of each pixel an error mask is made. Converting the error mask to depth error a 

heat map image is created to highlight regions with higher error. Figure 4 shows the 

depth error heat map results with and without edges.  

 

 
Figure 4. Depth error heat map image (Left), Depth error heat map image without edges(Right).  
Figure 5 shows the depth error heat map of the same crop considered in Figure 3. 
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Figure 5. Depth error heat map image without edges (Left) Annotated heat map with edges (Middle), 

Annotated ground truth (Right). 

The regions with dotted yellow lines annotation are the regions where the model 

performed worst, with errors ranging between 2,1m (purple), 4,2m (blue), and 8,4m 

(green). This type of event occurred in the transition from white parts, which depth 

correspond do 18 meters, to darker colors (which depth is near 0m) when analyzing the 

ground truth image. The error in the green region was smaller, ranging from 0 (black) to 

2,1m. The model had the worst performance in regions with the transition to white spots. 

Because the Middlebury is a dataset extracted from stereo vision data, the white color is 

considered as a region where the matching algorithm could properly calculate the true 

depth, therefore considering the depth as the maximum value, which is 18 meters.  

5. Conclusion and future works 

In this work, the problem of ToF noisy depth images and the difficulty to acquire 

accurately noiseless depth images were approached, as a solution, a methodology using 

synthetic dataset and convolutional neural networks was proposed. The novelty of this 

work was to adapt the denoising approach which is commonly used for an 8bit image 

and apply it to 12-bit depth images. It was possible to simulate real ToF hardware by 

converting disparity generated maps to depth maps, and then normalizing the output to 

12bit images. A CNN was trained with artificial images Gaussian noise using and then 

used for reducing noise in a real-world dataset with known ground truth.  

The preliminary results pointed out that filtering performance did not achieve the 

state of the art performance and image output tends to blur. Spatial information seems to 

be lost during convolutions with stride 2, so a larger kernel to capture more spatial 

information could be a good option to implement and potentially reduce the blur. The 

worst performance was detected on the transition of objects where the depth gradient 

was high, and this hypothesis was confirmed by the removal of the information on the 

edges, which increased the performance of the final solution. Modifying the network do 

semantic segmentation, to detect these transition regions can be an option to improve the 

filtering capability. 

The proposed architecture was able to mitigate some of the noise but it can be 

improved by optimizing hyperparameters and integrating semantic segmentation. The 

results also confirm the possibility of using only synthetic generated depth maps. Future 

works will also include the test of the model in a real scenario with a rear ToF camera to 
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validate the proposed architecture. This will increase its applicability to ToF equipment 

for complex navigation scenarios, either indoor or outdoor. 
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