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Abstract. Hand and wrist skeletal radiographs serve as an important medium for 
diversified medical and forensic tasks involving bone age assessment. As an 

alternative to traditional atlas-based bone age identification techniques, deep 

learning algorithms automatically classify the radiographs into predefined bone 
age classes, provided that the deep neural networks (DNN) have been well 

trained with large scale annotated datasets. Most of the current bone age 

classification DNNs directly explore the existing network models developed for 
other computer vision representations and understanding applications, such as 

VGG, Inception, and ResNet. In this work, we present a multi-scale attention-

enhanced classifier with a convolutional neural network backbone, specifically 
designed for bone age prediction and trained to learn a subject's bone age and 

gender jointly. The proposed classifier is trained with the dataset provided by the 

RSNA machine learning challenge, and the low-level semantic features are then 
transferred to a smaller Tongji dataset collected from a hospital in China. As 

demonstrated by the experiments, the proposed classifier achieves the MADs of 

0.41 years over RSNA data and 0.36 years on Tongji data, outperforming other 
single model state-of-the-art and baseline algorithms for the same test. It 

illustrates that joint learning of gender information plays a critical role in refining 

the bone age assessment, while the convolution-based attention mechanism helps 
retrieve the key features. 
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Introduction 

X-rays and other medical imaging techniques have dramatically changed the 

landscapes of modern medical practice. One specialized application of the X-

radiographs is to provide the evidence for radiologists to estimate the bone age of a 

child, based on the belief that the radiographs of hand skeletons reflect the maturity 

degree of the child's bones [1]. Although most children have bone ages identical to 

their chronological ones, an individual's bone growth may be affected by many other 

elements, such as genetics, hormone levels, dietary habits, and metabolic disorders, etc. 

In practice, accurately estimating bone age is critical in identifying many growth-

related problems. 
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Conventionally, radiologists search in an atlas for a match by visually examining 

the similarities with the X-ray image, as established in the Greulich and Pyle (GP) 

method. To reduce the human bias in comparison, the Tanner and Whitehouse (TW) 

method requires the evaluation between more specific regions of the radiographs and 

introduces a set of detailed features for the systematic scoring [2] (see Fig. 1 for an 

example). Atlas-based bone age assessment relies on the standard atlas and personal 

judgment. Therefore, sometimes two radiologists may disagree on the prediction for the 

same radiograph. In the past decade, machine learning has made innovative progress in 

understanding and interpreting medical data. Especially, assorted deep neural networks 

have proven their potential in assisting the doctors to diagnose many diseases [3, 4]. 

Several factors contribute to the successes of deep learning applications, including the 

increasing computing power, more sophisticated network architecture, and the large 

annotated datasets. Nevertheless, labeling the large dataset is a nontrivial project for 

most medical tasks. In addition to the reluctance from the medical institutions to share 

their privacy-sensitive data, the data labeling process is both laborious and costly. As 

an alternative, transfer learning enables a new application to take advantage of the 

knowledge learned from other domains, and thus eases the burden of developing large 

data sets from scratch. 

In 2017, the Radiological Society of North America (RSNA) organized a pediatric 

bone age machine learning challenge. Deep neural network methods won an impressive 

advantage over competitors in this challenge, with the few best results about 4 months 

in mean absolute difference (MAD) on test set [5]. Since the bone age only marks the 

average development phase of bones for the children at a certain age, it exhibits large 

variabilities across different economies, regions, and races. Therefore, model 

refinement is needed when the target group differs from RSNA sources. 

 

 

Figure 1. Some of the selected regions of interest (ROI) in specific bones of the wrist and hand used in TW 

method. 
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In this paper, we propose a multi-scale residual neural network (termed TJ-Net in 

this paper) for radiograph-based bone age prediction, introducing the attention 

mechanism to highlight the features important to the age group classification. Our 

earlier research reported that the features for bone age assessment could deliver a 

meaningful sex classification [6]. In this work, we extend this finding to a joint sex and 

bone age learning framework. The extensive experiments confirm that the learned 

features are in line with the traditional atlas-based assessment and transferrable to other 

datasets.  

1. Related Work 

The rich representation learning capabilities make the convolutional neural networks 

(CNN) and their variations one of the most successful deep learning tools in computer 

vision tasks [7, 8]. With CNN's ability to learn semantics-level features, [9] uses CNN 

to match the GP style atlas, and [10] uses CNN as a feature extractor for support vector 

machines to finish the classification of bone-ages. Most deep bone age assessments 

directly take the existing CNN models such as VGG16, Inception V3, and ResNet50 as 

the backbone, followed by a couple of dense layers to conduct regression or 

classification ([11], [12]}, and [13]).  In [14], the authors take the pretained ImageNet 

and further fine-tune the classifier, generating an attention map similar to the ones used 

by human experts. [15] examines several bone age assessment DNNs consisting of 

convolutional and regressional layers. To focus on the specific regions in a radiograph 

that are believed to be critical, in the preprocessing stage, people either manually or 

automatically detect these regions in the hand skeleton ([16], [17], and [18]). Also, data 

augmentation can help alleviate the overfitting of some models, thus many proposals 

take random flips, crops, and contrast adjustment for image preprocessing [11]. [12] 

proposes an ensemble to integrate the estimates by three hand sections. The large 

dataset provided by RSNA laid the foundation for further improvement of applying 

DNNs in bone age assessment [5]. In addition to the pixels in radiographs, sex 

information input proved to help improve bone age assessment [5]. Furthermore, [19] 

explores the correlations between the models submitted to the RSNA challenge and 

achieves improved performance by combining the less-correlated ones into an 

ensemble. 

2. Proposed Method 

The proposed bone age classification network, called TJ-Net in this letter, consists of 

several functional blocks. Fig. 2 outlines the two-pronged architecture of TJ-Net. It 

maps an input image into one of the 77 bone age classes (corresponding to 0-19 years 

with a 3-months basic unit), as well as a binary gender label (the gender classifier, i.e. 

block 5, will be discarded in the test stage). The first 4 cascaded blocks in TJ-Net 

extract the crucial features from the input. Block 5 fuses the multi-scale features into 

the high-level ones for a dense layer to finish the sex classification. Block 6, the age 

classifier, matches the image features and the sex input into predefined age categories. 

The separate sex input supplies additional information for age classifier to adjust the 

result, and the sex classification helps to learn the bone features applying to both age 

estimation and sex labeling. 
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Each of the blocks 1-4 of the network comprises convolutional/pooling parts. The 

final output comes from a softmax function, and blocks 5 and 6 have fully connected 

layers. Fig. 2 also lists the network parameters along with the components.  

We introduce the modules CBAM (Convolutional Block Attention Module), IncRes 

(Inception ResNet) into TJ-Net explores the attention mechanism, residual learning, 

and multi-scale features to empower the bone age-related feature extraction.  

 

Figure 2. Architecture of TjNet. 

2.1. Convolution-based Attention Modules 

Among those channel and spatial features detected from the frontal convolutional 

blocks, he convolution-filtered features have varying importance in discriminating the 

bone age. The introduction of CBAMs is to enhance the features more relevant to the 

overall objective across the channel and spatial dimensions. 

Following the practice in [20], each of three CBAMs in TJ-Net consists of two 

sequentially stacked components: channel attention and spatial attention modules. The 

input features first go through the average and maximum pooling layers in parallel, 

then two fully connected layers will produce a channel attention scale vector with 

sigmoid activation.  The original input features weighted by the scale form a new 

tensor. This refined tensor subsequently walks through two parallel pooling layers the 

same as in the previous module (see Fig. 3). Then, the concatenated result gets 

processed by a  convolution kernel. Finally, a sigmoid activation function 

outputs a spatial attention scale matrix. The output feature map is the multiplication of 

the scale matrix and the input features. 

 

Figure 3. Internal structure of module CBAM1. 

W. Tang et al. / Automatic Radiographic Bone Age Assessment224



 

Figure 4. Internal structure of module IncRes1. 

2.2. Inception Residual Modules 

Local features in different scales may provide more and broader views to examine the 

relations between X-ray images and the bone ages.  

There are two Inception Residual (IncRes) modules in TJ-Net, with slightly variant 

structures. Block IncRes1 consists of several branches with diverse convolutional 

kernel sizes (see Fig. 4). The multi-scale branches combine , and  

convolution kernels in particular ways. Additionally, IncRes2 has four inception 

branches, namely , , , and  respectively. Similarly, each of the 

modules Inception1 and Inception2 has four multi-scale branches, the combinations of 

, , , , , , and . The convolutional outputs are 

concatenated in the later stage. 

2.3. Loss Function for Joint Learning 

The proposed loss function integrates the global classification errors over the training 

set, and the local sex/age batch-wise cross-entropies. Let  denote the size of dataset,  

be the ground truth age label of sample , and  be its predicted label. Let MAD be 

 

We take an adaptive weight of , to stress the importance of batch-wise errors in 

the early training phase. After the batch losses become stable, we shall let the global 

error to navigate the learning process by increasing . 
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 Denote the cross-entropy of two distributions  and  as 

 

While at a certain age girls are roughly 2 years ahead of boys in bone development, 

it is not clear how the hand radiographs tell the difference between the two genders. 

However, gender labels can improve bone age assessment, as asserted in [5]. In other 

words, the conditional probability  for a given X-ray image  helps 

accurately judge the age with the correct gender input. To better characterize this 

conditional probability, we shall learn the joint distribution  from the 

training data by simultaneously minimizing the cross-entropies in a batch for both 

gender and bone age. 

 

where  and  are the ground truth gender/age frequencies and the predicted 

ones in a batch,  and  are the batch-wise cardinality of gender class  and age 

class , i.e. the number of samples labeled as the class  or  accordingly, and  is the 

size of a batch. Introducing the ratio weight is to level the influence of different classes 

within a batch.  

3. Experiments 

3.1. Datasets and Preprocessing 

We evaluated the proposed TJ-Net on both the RSNA data and the much smaller 

Tongji dataset.  

There are 14236 hand radiographs in the RSNA dataset, where 12611 are used for 

training, 1425 for validation, and 200 for test purposes. However, since the competition 

has been closed, the test data is no longer available. Hence, we partition the original 

training data into training, validation and test sets by the proportion 0.8:0.1:0.1, leaving 

1261 samples for test. Tongji X-ray images were collected and manually analyzed by a 

group of experienced radiologists with Tongji Hospital, a major teaching hospital 

affiliated to Huazhong University of Science and Technology. This dataset contains the 

radiographs of the (mostly left) hands of subjects ranging from 0 to 22 years old. We 

masked the original X-ray images to remove the private information. Because the 

original Tongji annotations were in years, we modified the network to output class 

labels in years. 

In the raw X-ray images, hands might orient to arbitrary directions. We rotated these 

images to make the hands' orientation consistently upwards. After giving up the 

radiographs with poor quality, we kept 1385 images for the experiments. Tongji data 

distributes almost evenly in gender distribution, with 768 samples for female, and 617 

for male.  

Because RSNA data and Tongji data had different resolutions, they were both scaled 

down to the  pixels in size. We took this size to balance two factors: first, 

small images would leave out the necessary detailed for radiologists to make an 

informed decision; second, high-resolution images might slow down the learning 

process with the limited computing resources in our lab. Also, regular data 
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augmentations were exploited in the online stage, including random crops, brightness 

changes, contrast variations, and flips.  

 

 

Table 1. Comparison of Model Test Performances (in years) on RSNA Dataset. 

Method  MAD RMSE 

VGG16 0.53 0.62  

Inception V3[5] 0.57  0.58 

Inception V4  0.59 0.97 

ResNet50  0.60 0.72 

TJ-Net 0.41 0.42 

 

3.2. Implementation 

We developed TJ-Net and other models in Python 3.6 with TensorFlow 1.7 framework. 

The hardware was a desktop computer equipped with one NVIDIA 2080Ti GPU card. 

All the models were trained using ADAM optimizer, with the batch size 16, and the 

initial learning rate . When the training was close to being stabilized, we reduced 

the learning rate to 1/1000 of its initial value. It took about 15 hours for the training on 

the RSNA dataset, and 5 hours for fine-tuning with the Tongji data. To compare TJ-Net 

with other methods, we also developed the models using different backbones (e.g. 

VGG16, ResNet50, and Inception V4) with the separate sex input module and dense 

layers for classification [5]. These models were trained and tested on RSNA data. We 

followed the same protocol in all experiments: randomly choosing 80% of the data for 

training, leaving 10% for validation, and the rest 10% for test. To make the fair 

comparison, we tested Inception V3 with the RSNA data on the online server provided 

by 16bit, the top winner of the RSNA challenge (https://www.16bit.ai/bone-age).  

In TJ-Net, the first two convolutional blocks feature small  kernels, to reduce 

the information loss of the images. In general, the features extracted from the first 

layers mainly capture the low-level vision details. Multi-scale deployment can extract 

multiple structural characteristics, and the residual link helps train the network. In the 

binary sex classification in block 5, we take only one fully connected layer of 256 

neurons, to predict sex using the standard softmax function. The additional sex input 

block uses 64 neurons. Block 6, the age classification, has two dense layers, with 512 

and 256 nodes respectively, followed by a normalized softmax function. Parameter  

was set to 1.5 in the beginning, then boosted to 77 (the number of classes) after the loss 

became stable. 
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Figure 5. Comparison of the activation maps of block 4 learned without CBAMs (left) and with CBAMs 

(right), for a boy with the bone age labeled as 15 years old. 

 

  

Figure 6. Comparison of prediction error distributions over age groups (in years) of RSNA data with (left) 

and without (right) joint sex learning. 

 

3.3. Results and Analysis 

Table 1 lists the comparison results of different models. We first trained TJ-Net with 

RSNA data and preserved the parameters of some blocks while fine-tuning the rest of 

the model with the Tongji training set. The MAD on the test set with blocks 1-3 frozen 

achieved the best outcome of 0.36 years (Table 2). It showed that our model TJ-Net 

was capable of capturing the critical features in assessing radiographic bone age and 

these low-level features applicable to different ethnic groups in distant regions.   

Fig. 6 indicates that the predictions for both RSNA and Tongji data were basically 

unbiased. The errors for the two datasets were similar in distributions. 

 
Table 2. Comparison of transfer learning results using different freezing strategies. 

Pretrained Blocks  MAD RMSE Training Accuracy Test Accuracy 

Block 1 0.688  1.645 0.996 0.797 

Blocks 1, 2 0.565  0.986 0.889 0.875 
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Pretrained Blocks  MAD RMSE Training Accuracy Test Accuracy 

Blocks 1-3  0.362 0.551 0.891 0.922 

Blocks 1-4  0.638 1.072 0.879 0.883 

 

To verify the effectiveness of different components in TJ-Net, we did the ablation 

analysis for the functional parts. We compared the resulting MAD and RMSE using 

RSNA dataset for the models, leaving one component out at each time. After 

eliminating the shortcuts in IncRes modules, the re-trained model obtained a MAD of 

0.571 years. Similarly, without CBAMs, the simplified TJ-Net generated a MAD of 

0.578 years, suggesting the positive role of attention modules. To visualize the impact 

of CBAMs on the trained model, we draw the heat maps of the activated features 

learned by block 4. In Fig. 5, the activation map with CBAMs pinpoints to the key 

locations similar to the ROIs examined by the TW method (Fig. 1), while the salient 

points found without attention mechanisms spread over a large area.  Finally, if the 

gender classification and the associated loss were taken out, the MAD increased to 

0.578 years. This indicates that joint learning improved the contribution of sex input in 

assessing bone age.  

 

 

Figure 7. Comparison of the sex input weight matrices in block 6 without joint learning (top) and with joint 

learning (bottom), black represents 0. 

The boxplots in Fig. 6 display the estimation error distributions for TJ-Net with and 

without block 5 and joint learning. Though the estimations are virtually unbiased, 

adding joint learning to TJ-Net allows more accurate predictions for most of the age 

classes. Moreover, in Fig.7 where the grey scales represent the strengths of the weights 

(black equals to 0), we see that joint learning makes the sex input weight matrix sparser, 

intensifying the influence pattern of sex input on bone age. 

4. Conclusions 

In this work, we proposed a specifically designed deep learning neural network, TJ-Net, 

for automatic radiographic bone age assessment. In TJ-Net, the attention modules 

helped find the features resembling the focal points explored by human experts, and the 

joint sex/age learning enhanced the predication of age conditional on sex labels. 

Experimental results demonstrated that the low-level features learned from the RSNA 

dataset could be transferred to the data acquired by a Chinese hospital from local 

subjects. With the MADs of 0.41 years and 0.36 years on RSNA and Tongji data, the 

proposed model performed better than other single model state-of-the-art methods. 
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