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Abstract. Observational ergonomic evaluation methods have inherent subjectivity. 
Observers’ assessment results might differ even with the same dataset. While motion 
capture (MOCAP) systems have improved the speed and the accuracy of motion-
data gathering, the algorithms used to compute assessments seem to rely on 
predefined conditions to perform them. Moreover, the authoring of these conditions 
is not always clear. Making use of artificial intelligence (AI), along with MOCAP 
systems, computerized ergonomic assessments can become more alike to human 
observation and improve over time, given proper training datasets. AI can assist 
ergonomic experts with posture detection, useful when using methods that require 
posture definition, such as Ovako Working Posture Assessment System (OWAS). 
This study aims to prove the usefulness of an AI model when performing ergonomic 
assessments and to prove the benefits of having a specialized database for current 
and future AI training. Several algorithms are trained, using Xsens MVN MOCAP 
datasets, and their performance within a use case is compared. AI algorithms can 
provide accurate posture predictions. The developed approach aspires to provide 
with guidelines to perform AI-assisted ergonomic assessment based on observation 
of multiple workers. 
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1. Introduction 

The novel Industry 4.0 (also called the 4th industrial revolution), based on digitalization 
and future-oriented technologies in the field of “smart” objects, is changing the way 
companies understand and approach their processes [1]. Industry 4.0 comprises a large 
variety of concepts, where the most relevant for this paper are cyber-physical systems 
(CPS), adaptation to human needs, and corporate social responsibility [1].  

CPS can be defined as “integration of computation and physical processes, where 
embedded computers and networks monitor and control the physical processes, usually 
with feedback loops where physical processes affect computations and vice versa” [2]. 
Physical measures are digitalized using sensors to reach this integration. However, this 
digitalization focusses more on produced goods, services, and the components to create 
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them, rather than focusing on the role of human beings in the design of smart factories. 
Monitoring technologies allow the integration of human-related data into the design 
process, along with machines and their connectivity and interoperability features [3], 
making it more socially sustainable, intelligent, and flexible [4].  

Monitoring technologies which focus on movement-related data are called motion 
capture (MOCAP). They have applications in several fields such as filmmaking, 
videogames, robotics, healthcare, ergonomics, and mechanics. There are three main 
technologies currently used within MOCAP: wearable inertial sensors, smart textiles, 
and image/video recognition. Wearable inertial sensors include gyroscopes and 
accelerometers to record motion. Inertial/magnetic measurements units are often added 
to compensate for possible drawback of the other sensors [5]. On the other hand, smart 
textiles provide standard fabrics with some kind of extra functionality, mostly within 
monitoring health-related variables [6]. Lastly, the current advances in artificial 
intelligence (AI), especially in the field of image recognition, have helped include this 
technology into the MOCAP field [7]. While some authors’ research is done within pose 
estimation, where 2D images or videos are the primary sources of information [8–11], 
others have their focus on applying MOCAP directly to different processes/fields [12]. 
2D image recognition can accurately predict specific anthropometric measurements [13], 
but it does not seem powerful enough to perform when the subject is moving or within 
the whole range of postures. On the other hand, 3D cameras (or depth cameras) can reach 
the highest accuracy among MOCAP systems, but they have disadvantages such as the 
need to have a clear sight on the target. 

One application of MOCAP systems is aiding within physical ergonomic 
evaluations, seeking the prevention of work-related musculoskeletal disorders (WMSDs) 
[12]. Risk factors for WMSD include rapid work pace, repetitive motion patterns, 
forceful extensions, non-neutral body postures, heavy lifting, and vibration [14]. 
WMSDs have a high health and economical cost [15], due to factors such as work 
absence [16], healthcare expenditure [17], or loss of quality and productivity [18,19] 
among others, as well as the personal cost such as the physiological and stress problems 
suffered by the workers [20]. 

Posture-related ergonomic evaluations (referred just as ergonomic evaluations in 
this paper) can help to decrease the effect of these problems either by letting workers 
know when their postures are not good enough [21] or by designing workstations that 
lead the workers to have a better one [22], among others. Ergonomic evaluation methods 
can serve these purposes since they are applied to identify and assess risk factors in the 
workplace. These evaluation methods can be divided into several categories: self-report, 
simple observational techniques, advanced observational techniques, and direct 
measurement [23]. Direct measurement methods are the most objective since the results 
are based on analytic data, in contrast with observational methods, which rely on the 
subjective ergonomist´s judgment to assess the work task [24]. Observational methods 
are performed by looking at the work task (or on a videotape for example) and taking a 
few staple measures, such as the weight of the objects that the workers manipulate. 
Ergonomists can make use of either an existing evaluation method (Rapid Upper Limb 
Assessment (RULA) [25], Rapid Entire Body Assessment (REBA) [26], and Ovako 
Working Posture Assessment System (OWAS) [27], among others), or a custom one. 

Traditionally, the attempts to automatize observational methods with MOCAP data 
have been based upon the premise that it is better to strictly apply the guidelines of certain 
method rather than apply these methods with the implicit human subjectivity. However, 
the judgment of an expert is not necessarily the wrong criteria for evaluation. Instead, 
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given the power of human reasoning, they can consider several variables omitted in the 

ergonomic assessment method used. 

Experts might have different opinions about the same posture or task when applying 

an ergonomic evaluation method, e.g. about whether someone is bending instead of 

standing straight when the posture is unclear. If a particular set of variables are analysed 

to differentiate between postures, and these variables are measured using MOCAP 
equipment, the subjectivity of the evaluation can be taken away. While MOCAP systems 

can accurately measure anthropometric variables, posture classification (or labelling) is 

done by a human. AI can both directly learn from human classification, and it can adjust 

its predictions to the fine refinement that the human might apply to the assessment. 

This study aims to investigate the advantages of approaching observational methods 
with combined use of AI and MOCAP systems. In the next section, an AI-based approach 

to observational ergonomic evaluation methods is presented. Section 3 presents, an 

example of the proposed approach, applying AI-based working posture detection within 

OWAS evaluation method, is described, followed by a discussion of the results and a 

summarize of the outcome in Section 4. 

2. Proposed AI-based approach to observational ergonomic evaluation methods 

Humans are valuable limited resources, and many might find observation to be a tedious, 

time-consuming process. Moreover, observation is based on the observers’ perception 

[24]. When it comes to perception, AI algorithms (sometimes referred to as AI models) 

can provide with predictions, which are probabilistic outputs of the model trained using 

datasets built based perception. These models are capable of achieving even lower error 

rate results than humans in some fields, e.g., visual recognition algorithms, which have 
surpassed humans in several visual tests [28]. Preventing misuse of human resources 

would enable performing tasks in which humans are much better than machines, such as 

understanding complex problems and identifying underlying patterns.  

To perform the search for previous work, the following string was defined:  
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From the 34 results in the Scopus database, 21 abstracts were screened, and only 7 of 
them were relevant for this paper [29–37]. None of the reviewed papers was using or 

aiding existing ergonomic assessments through learning from multiple experts’ 

knowledge or perception. Selection schema is presented in Figure 1. 

 

 
 

Figure 1. Flow chart of literature search and selection schema. 
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For the sake of generalization, fifteen different observational ergonomic evaluation 
methods were considered. The inputs required to perform each method can be classified 
into two groups [23]:  

 
 Objective inputs are feasible to apply direct measurement and computing, 

since they rely on accurate data, such as mean power frequency (MPF). 
 Subjective inputs are inherent to perception [38], and therefore problematic 

when deciding how to measure and compute them: working posture, recovery, 
and complex factors (environmental conditions, psychological, and individual 
factors, among others).  

2.1. Workflow and components 

In the following section, the suggested workflow is presented: from defining the problem 
to applying an operational AI-based solution to observational ergonomic evaluation 
methods using MOCAP systems. The starting point should always be particular 
ergonomic needs. Different problems, and ergonomic assessments available to handle 
them, shape the solution.  

Depending on what kind of postures need to be measured, a specific MOCAP system 
will be more or less suitable than others. While the market is moving towards a new 
generation of low-cost MOCAP systems [39], certain MOCAP technologies might 
involve a trade-off between budget, desired accuracy, reliability, and extension of the 
ergonomic assessment to cover.  

Existing solutions could also be a determinant factor, where used MOCAP would 
be a suitable, directly applicable solution. When selecting a MOCAP system, one of the 
criteria should be whether it is aimed to cover the entire ergonomic assessment (all the 
input variables are measured using MOCAP) or part of it (only certain variables). 

Once data is collected, it might be possible to use an existing compatible solution 
(one which has the same MOCAP data). If there is no solution available, a custom one 
will be required, where MOCAP data will also be used to train an AI model. It will be 
necessary to carefully study the variables, and not include in training those not used to 
define a specific posture. For instance, a variable such as a neck angle most likely should 
not be included when aiming to predict lower limbs posture.  

The AI model to use could differ from case to case. Evaluation is needed for the 
trained model, where MOCAP system feeds the AI model to check its feasibility. If the 
model is not good enough (most likely according to subjective criteria), the AI model 
would need to be retrained. This approach can be illustrated, as shown in Figure 2. 

3. Evaluation of the suggested approach  

Regardless of theoretical advantages, empirical results are desired when trying to 
demonstrate the feasibility of AI models. With this objective, the following use case is 
presented: building an AI model for posture prediction using the OWAS ergonomic 
evaluation method. OWAS inputs (postures) are defined descriptively in the assessment, 
instead of numerically, as it is done in other ergonomic assessments, such as RULA or 
REBA, where specific angle values are provided. Therefore, OWAS postures are 
subjective by nature, and different evaluations have been performed with different 
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criteria. Within OWAS, there are four different categories for back postures, three for 

upper limbs postures, and seven for lower limbs postures. AI can help by learning from 

the humans’ classification, based on perception, and providing with predictions based on 

that training.  

Other ergonomic evaluation methods would be also suitable for the case. The 

method itself would be a starting point for training, and the main task for AI would be to 
modify the original parameters of the method according to the humans’ final refinement.  

The task performed by the subject under study is hypothetical, where the subject 

moves within the range of postures which would fit in the different OWAS categories. 

This use case is focused on the OWAS postures detection, rather than applying the 

assessment strictly. 
Following the presented approach, questions are answered as follows: 

 

Q1: Found a suitable assessment?  

A1: Rather than looking at suitability, OWAS is selected given its subjective nature 

[40], so an AI-based solution is built to potentially aid observers to have a more 

consistent judgement of posture classification when using OWAS. 
 

Q2: Can variables be measured? 

A2: As mentioned, OWAS does not provide with information about how to classify 

postures through anthropometric measurements. However, posture-related variables can 

be measured, since MOCAP systems provide enough information to accurately relate 

these variables to the labels in OWAS. The set of variables, picked to relate perception 
into OWAS labels, are back (in terms of inclination and rotation), upper limbs (shoulders 

angle), and legs (lower limbs angles). Several solutions are available to measure these 

variables. It is decided to use Xsens MVN [41], due to its current availability at the 

University of Skövde. 

 

Figure 2. Suggested workflow for the presented AI-based approach. 
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Q3: Existing solution? 

A3: No, there are no AI models already trained for OWAS ergonomic assessment. 

A custom solution is required (See section 3.1). 

 

Q4: Good enough solution? 

A4: Solution is evaluated in Section 3.3.  

3.1. Building an AI-based solution for the use case 

A database is needed to build a custom solution, where MOCAP systems input is related 

to the different inputs required to perform the selected ergonomic assessment. In this 

case, Xsens’ input is related to one of the OWAS categories [27], required to determine 

the posture: back posture, upper limbs posture, and legs. The database is generated using 
the answers from an online distributed questionnaire created by the authors of this paper. 

On it, participants were asked to classify 60 postures by selecting between two options, 

each shown in a figure including a real picture and the associated virtual representation 

(manikin), in one of the OWAS categories (Figure 3). At the beginning of the 

questionnaire, participants were asked to read the original OWAS study. The 

questionnaire was answered by 7 participants, being their area of expertise ergonomics 
(within either industry or research) and healthcare. 

 

 

Figure 3. Example a question within the questionnaire. 

 

Results are tabulated for AI training in Matlab. During the training stage, using 

Statistics and Machine Learning Toolbox and Deep Learning Toolbox in Matlab, the AI 

algorithms will map inputs (MOCAP data) to outputs (OWAS posture category). Ten 

different supervised learning algorithms (both input and corresponding output are 

provided during the training stage) are trained: Fine decision tree, medium decision tree, 
coarse decision tree, fine k-nearest neighbours (KNN), medium KNN, coarse KNN, 

cubic KNN, weighted KNN, and convolutional neural network (CNN). CNNs, are less 

sensitive to the training datasets, and therefore less affected by outliers. However, when 

using CNNs, it is challenging, if not impossible, to interpret the model and analyse useful 

information, such as the correlation between variables. 

From 60 questions and 7 answers per question, the total size of the built dataset is 
420. To prevent overfitting, decision trees and KNN models were trained with 70% of 

the dataset, with cross-validation set to 5 folds. The CNN was trained with 70% of the 
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dataset, leaving 15% for validation and 15% for verification, using the Levenberg-
Marquardt training algorithm. 

The inputs used for training were joint angles values coming from Xsens. Domain 
knowledge is applied to reduce the number of variables, reducing the risk of 
misclassification, and only variables related to the posture aimed to classify are used for 
prediction, as is shown in Table 1. For instance, limbs information is deleted from the 
dataset used to predict back postures. 

 

Table 1. Example of dimensionality reduction for AI training, divided by category. The variables (joint values) 
presented are named as they are defined by the Xsens system. 

OWAS category Variables used for training (joint values)

Back Pelvis, Lower back (L5 + L3), Chest (T8 + T12) 
Upper limbs Shoulder (left and right), Upper arm (left and right) 

Legs Pelvis Lower back (L5 + L3), Upper leg (left and right) 
Lower leg (left and right) 

3.2. Questionnaire results 

Results from the questionnaire show how experts might differ when classifying certain 
poses. For instance, in the question shown in Figure 3, 57% of the participants classified 
the posture as “bent”, in contrast to 43% who classified it as “straight”. Significant 
differences can be found when comparing straight and bending postures. Legs and upper 
body rotation appear to be less problematic among the participants, with a lower degree 
of disagreement.  

Questionnaire sections are related to the type of posture to classify: questionnaire 
section 1 compares straight and bent back postures back, questionnaire section 2 
compares bent and a combination of bent and twisted back postures back, questionnaire 
section 3 classifies upper limbs posture, and questionnaire section 4 classifies lower 
limbs postures. Questionnaire section 5 compares two postures not included in OWAS, 
in which a comparison between bent and straight back, having bent legs, is made. This 
last section is included to compare the different experts’ judgment when classifying a 
posture not included in the ergonomic assessment. Figure 4 shows the disagreement ratio, 
comparing dominant options (the ones selected by most of the participants) with the other 
ones. Figure 5 illustrates an example of a uniform answer and an example of a non-
uniform answer. 

 

 

Figure 4. Disagreement ratio from the online questionnaire, comparing dominant options (the ones selected by 
most of the participants) with the other ones.  
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Figure 5. Example a uniformly answered question vs non-uniformly answered question. 

3.3. Implementation results 

Training results for each trained model are provided in Table 2. Training time for each 

model was shorter than a few seconds, except for the CNN, where training time was 25 
seconds. When using larger datasets, training time is expected to stay relatively short in 

all the models, except for CNN. 

 

Table 2. Training results for each trained model and its accuracy with the different OWAS categories. Most of 

the models result in high performance, indicating potential suitability of their use. 

Model Back OWAS 

 accuracy (%)

Upper limbs OWAS 

accuracy (%)

Legs OWAS 

accuracy (%)

Avg. (%) 

Fine tree 91.8 98.1 97.1 95.7 

Medium tree 91.8 98.1 97.1 95.7 

Coarse tree 85.7 98.1 97.1 95.6 

Fine KNN 85.4 95.2 97.1 92.6 

Medium KNN 90.7 98.1 97.1 95.3 

Coarse KNN 79.3 55.2 97.1 77.2 
Cosine KNN 92.1 98.1 97.1 95.8 

Cubic KNN 90.7 98.1 97.1 95.3 

Weighted KNN 92.9 98.1 97.1 96.0 

Convolutional 

Neural Network

99.9 99.9 99.9 99.9 

 

Resultant accuracy values in the OWAS back category suggest that these kinds of 

models are suitable for posture classification when the dataset is large enough. Upper 
limbs and legs predictions accuracy for the different models are the same, which would 

be a rare situation when using more data. More significant results would be expected if 

the upper limbs and legs datasets used was as large, and as varied, as the back dataset. 

The results obtained with CNN suggests that it is overfitting the dataset, most likely 

making the solution not suitable for other datasets. 

4. Discussion and future work 

Simple tasks, such as posture estimation within ergonomic evaluations, should not 

consume human time, and it could be done in an automatic, large-scale manner. Using a 
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systematic AI-based approach to ergonomic evaluation methods, where AI is considered 
from the beginning, has potential future applications, including but not limited to: the 
study of workers behaviour to optimize workstation design and prototyping, the study of 
patterns which might affect the long-term worker health, or workstation reconfiguration 
and optimization based on worker’s movements. Furthermore, the existence of MOCAP 
would enable the implementation of human-related data into CPS and other platforms.  

Results suggest that applying AI algorithms to observational ergonomic evaluation 
methods could be suitable for aiding in the computation of ergonomic assessments. AI-
based solutions can be built by training models based on the experts’ judgment applied 
to data extracted from body movement. While the results are promising, some models, 
like CNN, seem to be overfitting, providing exceedingly high accuracy for the current 
dataset. Overfitting makes difficult to predict how these models would behave when 
using new datasets. Further testing is required to validate the different models. AI-based 
ergonomic evaluations are most likely to improve over time, with ergonomic experts’ 
feedback and with the use of new datasets for training. Moreover, further study about 
how AI-related parameters affect predictions when using MOCAP systems is needed. 

AI can work with a dataset of a particular moment in time, e.g., recognizing working 
postures, but also with cumulative data, using models like recurrent neural networks 
(RNN). These kinds of AI-models would enable the recognition of an entire range of 
motion-related variables, such as current working tasks or precedent postures [7]. One 
of the topics for future research is using task recognition for suggesting the most suitable 
ergonomic assessment for each case. 

One of the main challenges of the presented approach is to generalize it to multiple 
MOCAP systems, given their differences when it comes to digitalization of motion-
related data. Each system might provide data in different formats, lacking some parts of 
the body, or use postprocessing for various reasons, such as global position calibration. 
In future studies, and if a comprehensive database is aimed to be created, further 
discussion about a common ground for multiple MOCAP systems would be required. 
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