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Abstract. Active human body models (AHBM) are essential engineering tools to 
provide further biomechanical knowledge. For example, to predict injury risks and 
kinematic behaviour in a wide range of possible scenarios such as low-g and 
multiaxial loading scenarios where muscle activity has shown to affect head and 
neck kinematics. The validation of the AHBM, in particular, the tuning and selection 
of an appropriate control strategy is a significant challenge. There are two main 
contributions of this paper. First, a Driver-in-the-Loop (DiL) simulator, used for 
reproducible and safe data acquisitions of human behaviour, is presented. Second, 
subject-specific control parameter identification to replicate the unique behaviour of 
each subject by using a modular calibration approach. The DiL setup is modelled in 
Madymo using the active human model (AHM) as a representation of the human. 
The Matlab/Simulink interface of Madymo is extended to implement in Matlab two 
new individual muscle control strategies for the head-neck region of the AHM; 
(i) PD controllers based on the muscle length – motivated by the equilibrium point 
control theory and (ii) the in-vivo stretch reflex – based on the strain measuring 
capabilities of the muscle spindles. Any optimization procedure available in Matlab, 
i.e. a particle swarm optimizer, can be used to calibrate the control parameters to 
achieve a good agreement between DiL measurement data and the simulation output. 
Finally, this modular workflow is used to identify two subject-specific sets of 
control parameters. These subject-specific parameters play an important role in a 
robust representation of human occupants. 
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1. Introduction 

Traditional crash test dummy models fail to represent the dynamic behaviour of humans 
in integral safety concepts. Therefore, digital human models suited for the dynamic 
analysis of safety and comfort are becoming more critical.  

For instance, realistic predicted kinematic behaviour influences the injury risk 
assessment in pre-crash manoeuvers. Essential in these investigations is the 
consideration of the active behaviour of the occupants. In [1] an overview of existing 
active human body models (AHBM) in the field of vehicle safety with the corresponding 
muscle control approach is provided. For the validation and calibration of these models, 
volunteer tests need to be performed and evaluated. The active control intervention and 
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the chosen passive characteristics need to match real human behaviour for valid 
kinematic predictions. The improvements in passive properties of AHBM are not part of 
this work. The focus is on muscle controller parameterization, which defines the control 
intervention. Due to the variation in human behaviour which is pervasive in volunteer 
tests [2, 3] and real-world traffic, there is no characteristic controller setup which is 
representative of all This distribution of individual human reaction types is considered 
relevant to predict realistic occupants’ kinematics in events of moderate acceleration 
values. These Pre-Crash movements of the occupants affect their injury risks and need 
to be accounted for in the development of future mobility solutions, where each 
individual is protected as best as possible.  

In standard parameter identification and validation approaches, the experimental 
results are often averaged. Afterwards, parameter identification for the mean trajectory 
is performed. Nevertheless, for at least some volunteer tests the observed variance in the 
experimental results cannot be sufficiently modelled by a mean trajectory in addition 
with a variance of the identified mean parameter values, as the subject show different 
motion patterns. Therefore, averaging the experimental results before the identification 
process is debatable. In the worst-case, such an approach isn’t even representative for 
any of the subjects. 

In our approach, we try to find parameters for each individual in a first step and 
process the identified parameters afterwards. These individual results could be clustered 
to gain a set of representative controller parameterizations for different groups of human 
with similar characteristics, for example, level of consciousness or the individual motion 
strategy. Additionally, the variability of the experimental results inside the clusters can 
be replicated by using fuzzy valued parameters [4] instead of nominal parameter sets. In 
case of large data sets also information about the likelihood of parameter ranges can be 
considered. The behaviour of each individual itself is not the goal of our research but a 
first necessary step towards a more representative parameterization of AHBMs. 

Current implementations of muscle controllers mainly focus on PD controllers based 
on joint angles in combination with spatial tuning patterns gained from experimental 
results, e.g. [5], – mapping angular deviations into appropriate muscle activation to 
decrease the control error, e.g. [1, 6]. These spatial tuning approaches need quite large 
input data to ensure adequate muscle activation based on angle deviations and the current 
posture. Alternative approaches on muscle level, like reflex control [7] or equilibrium 
point control [8, 9] could be beneficial in non-nominal postures because there is no need 
to adapt and identify spatial tuning patterns for a large variety of individual postures. 

Therefore, the main contribution of this work is to present a workflow which allows 
the identification of individual muscle controller parameter for each individual subject. 
In Section 2.1, a Driver-in-the Loop setup is presented, which is used to gain the 
necessary experimental data for muscle parameter identification in a reproducible and 
safe way. In Section 2.2, the simulation setup in Madymo which emulates the 
experiments is presented. Afterwards, it is motivated why only a head-neck submodel is 
used in the identification procedure. A modular structure enabled by the Madymo 
coupling with Matlab/Simulink is used to parametrize and optimize the muscle level 
controller, which makes the workflow very flexible. The clear separation into subtasks, 
i.e. dynamic simulation in Madymo, muscle controller in Simulink and optimization in 
Matlab, increases the usability. In Section 3 Results, the experimental results of a braking 
scenario presented in [10] are used to calibrate the two different individual muscle neck 
controller. The PD control strategy and the reflex control strategy is compared. The 
suitability of the muscle controller definitions and the performance of the calibration 
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approach is investigated. The paper finishes in Section 4 with a conclusion and an 
outlook. 

2. Methods  

The methods of this contribution are subdivided into three parts. i) Obtaining 
experimental results using a dynamical Driver-in-the-Loop simulator, ii) modelling the 
experimental setup in the simulation, including muscle controller and iii) optimizing the 
muscle controller parameters with a submodel for computational efficiency. This work 
combines the following software tools to a modularised workflow. The multi-body 
simulation performed in Madymo is separated from muscle controller modelling and 
parameter calibration/identification both performed in Matlab/Simulink. Furthermore, 
Madymo is controlled and evaluated with a Matlab-Madymo interface routine. This 
allows the simple adaptation of the muscle controller of each of the 136 muscle 
separately in Matlab/Simulink without the need of changing any input files of Madymo 
during the calibration/identification process. 

2.1. Driver-in-the-Loop Simulator Experiments 

The approach of using a DiL-simulator instead of traditional sled tests or real-car 
experiments possesses the following features: (i) a safe and reproducible environment, 
(ii) kinematic feedback in all six degrees of freedom, (iii) unconventional trajectories 
with superposed rotations to emulate translational accelerations, (iv) visual feedback of 
a virtual driving environment, e.g. by using head-mounted displays, (v) excellent 
accessibility for measurements and, (vi) fast application and testing of early alert systems. 
The whole setup is depicted in Figure 4. It consists of a 6-DOF motion platform, a force-
feedback wheel and a bass-shaker at the back of the driving seat. The software 
implementation is based on a Matlab-Simulink-model, initially generated in Simcenter 
Prescan.  

 
 

Figure 1. Driver-in-the-Loop simulator (left) with internal and external signal flow for simulation and 
experimental data acquisition. 

 
Measurements. To analyze the driver’s behaviour in the simulator during Pre-Crash 

situations, the kinematics, as well as muscle activation, can be monitored. The subjects 
and the simulator platform are tracked by a motion capture system Optitrack Prime with 
four Prime13W cameras using computer stereo vision with reflective infrared markers. 
Muscle activation measures are performed for the neck muscles sternocleidomastoid and 
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trapezius using surface electromyographics [10]. Additional sensors can be applied 
easily using the interfaces in the Simulink model of the DiL simulation. For example, a 
force sensor mounted at the steering wheel allows measuring the support of the driver 
applied on the steering wheel [10]. This force can be considered as an indication of the 
amount and timing of pre-stressing in an emergency braking situation. Additionally, it 
affects the T1 motion and lead to head displacements. All measures are synchronized 
using udp or TCP/IP network communication. 

Platform motion. The motion of the platform is calculated based on the state of the 
virtual vehicle model using motion cueing algorithms to emulate virtual vehicle 
accelerations [11]. Instead of performing a pure translational trajectory, in this setup, a 
combined translational and rotational excitation is used to emulate the vehicle 
accelerations. The longitudinal platform motion is extended by a superposed pitch 
motion (Figure 2).  

2.2. Modelling of the Experiments 

A simulation setup of the DiL-simulator is modelled with the multibody simulation 
software Madymo to enable the calibration of human models with the experimental 
results gained in the simulator. This simulation setup is based on the default Madymo 
application model of a car interior with an active occupant model under gravitation of 
9.81 m/s2. The occupant is represented by the active human body model of a 50-
percentile male human ( , ). The trajectories performed by the platform in 
the experiment are applied in the simulation using an ideal joint between interior parts 
and the inertial frame at the identical location as the platform rotational centre in the 
experiment, see Figure 3. First, the model needs to be initialised, with a settling run. 
From this settling run, a constant stimulation set Stiminit is gained, which ensures a stable 
posture under gravitational load. This stimulation values Stiminit, from the settling run, 
will be used in all the simulations of this paper. In a subsequent simulation, the model is 
run with Madymo default head neck controller with the parameters (headRef = 1, 
reaction time = 100 ms, no co-contraction and no arm bracing). The simulation run with 
the full model is only performed to extract the T1 motion of the model, to enable a 
submodel simulation with a head-neck model, described in the following section. In the 
field of vehicle safety, a common approach is to investigate submodels instead of the 
whole human model to decrease computational cost, the number of parameters, the 
complexity of the simulation model and to separate effects. For studying human neck 
control, for instance, it can be useful to neglect the influence of changes in neck control 
on the upper body motion and fix the T1 motion to experimental results [1, 12, 13] or to 
the values gained in simulations of the whole human model with default 
parameterizations (Figure 3). The HN-model is only applicable to identify neck 
controller parameters with a given T1 trajectory. Aspects influencing T1 trajectory need 
to be investigated separately, e.g. effects of boundary conditions or arm bracing against 
the steering wheel. In case of distinct arm bracing behaviour in the experimental results, 
the T1 trajectory of the full model needs to be reconciled before using it as an input of 
the HN-submodel simulations. As we aim for a separate calibration process for each 
subject, the reduction of computational cost of the full model (computation time 21 min 
37 s) is important and can be reduced by over five times (4 min 8 s) by using a Head-
Neck (HN) submodel. All the presented simulations were performed on Linux with 
Madymo R7.7 and Matlab/Simulink R2019b on a 12 core Intel i7-8700 processor with 
3.20 GHz and 64 GB RAM. 
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2.2.1. Head Neck model with muscle control in Matlab/Simulink 

To increase computational efficiency and to allow larger optimization runs, an extracted 
HN-model is derived based on the default AHBM. Muscle insertion points, which are 
used to be part of the upper body, are fixed to T1. The trajectory of T1 obtained in the 
nominal AHBM is used in the HN-model as kinematic excitation  (Figure 
3). In this phase of the investigations, the influence of changes in the neck controller 
parameterization on the upper body motion will be neglected. In this contribution, we 
want to focus on muscle level controller and their suitability in reflex-based scenarios 
with superposed rotations. The Madymo-Simulink coupling [14] is used to allow an 
easier muscle controller modelling for the 136 individual muscles.  

 

    
Figure 2. Platform motion longitudinal 
(black, dashed) and rotational (red) 
displacement in the braking scenario. 

Figure 3. Madymo application model with rotational centre 
Krot used to apply rotational and translational trajectories 
(left). Derived simplified HN- model with headrest and 
applied T1-trajectory rT1 (right). 

While the muscle controller can be modelled more freely and intuitive in 
Matlab/Simulink, providing the mapping of muscle length and muscle activation signals, 
the dynamical simulation is performed inside the Madymo software without the need of 
any further adaptions during the calibration process. An overview of the Simulink 
structure is shown in Figure 4 exemplary for the reflex controller implementation. It 
consists of three main components: 1) the Madymo model with input/output definitions 
to Simulink, 2) the muscle controller serving the neural excitation  at each time step 
based on the muscle length of the corresponding muscle element, 3) muscle activation 
dynamics which provides the muscle activation  based on previous activation value and 
neural excitation  of the controller.  

 

Figure 4. Structure of the Madymo-Simulink coupling: 1) Madymo transfer block with muscle activation 
signals a  136x1 as input and resultant muscle lengths at current time step l  136x1 as output, 2) muscle 
controller and 3) muscle activation dynamics. 

2.2.2. Muscle Controller  

In the following two muscle controller implementations are considered i) reflex 
controller and ii) PD controller both working only on the muscle length. 
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The muscle controller calculates stimulation values  
of muscle  is a function of its length conditions, initial constant stimulation value 

 resulting from the Madymo settling run, and controller specific options . Next, 
the two investigated controller definitions are described. 

Reflex Controller. The reflex controller is modelled by the following relation 
between muscle length and muscle stimulation  

 with , 

where  represents the strain of the muscle, the delay and the strain 
threshold. In case of no or moderate muscle strains  the muscle controller is 
inactive and outputs the constant muscle stimulation level  provided as input. 
In the optimization procedure the parameters ,  and  are used as 
optimization parameters, as they are assumed to have the highest relevance in the used 
controller hypothesis to match differences in subject behaviour in reaction time , trigger 
for activating muscles  and level of counteracting .  

PD controller. The PD muscle controller, is modelled by the following relation 
between the muscle activation , the target value for the muscle length  at the 
beginning of the simulation and the current (delayed) muscle length  and its 
derivative  

. 

During the optimization process, the parameters ,  and are adapted. 
In a first approach, the controller parameters ,  and are 

assumed to be equal for all muscles. An individual parametrization for muscles or muscle 
groups can be implemented easily but leads to increased optimization times and risk of 
overfitting or unphysiological parameterizations.  

The activation dynamics, calculating the muscle activation  based on the neural 
excitation  is modelled according to [7]. For the activation phase  
and for the deactivation phase to  is used. 

2.3. Optimization 

The optimization target is to decrease the deviations between simulation and experiment. 
In a first approach, the longitudinal head displacements , expressed in coordinates 
of the moving platform coordinate system, are used to calculate a cost function J 
formulated via a mean square error  

 

evaluated at discrete timesteps tm  [1.2:0.01:2.2]. More proper cost functions, e.g. based 
on CORA evaluation [7] or multiple target signals are conceivable. Local optimization 
approaches with reconstructed gradients did not show good convergence behaviour. 
Therefore, global optimization using a particle swarm optimizer [15] in Matlab is applied 
to find parameter sets to minimize deviations between experimental results and 
simulation. The swarm size per generation is set to 20. As hybrid function the Matlab 
optimization routine fmincon is used.  
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3. Results 

In the following, the simulation results of the head-neck model with optimized 
parameters are investigated. Additionally, the convergence of the optimization process 
is shown. Furthermore, the long-term stabilization properties of the presented muscle-
controller are outlined. 

3.1. Kinematic Results 

The observed kinematics of one subject in a single take is compared to the HN model 
with the parameter sets found during optimization. In this first investigation, we 
considered only . It is possible to consider other parameters in future 
investigations by adding them to the cost function calculation. The calibrated controller 
settings are evaluated in the time corridor t used in the optimization process 
to calculate the cost function J. In this phase of the scenario, a good agreement can be 
achieved for both PD and reflex controller after optimization. Due to the lack of 
proportional stimulation capabilities and its on-off characteristics, the reflex controller 
show less smooth behaviour and higher deviations (J=0.0098 vs. J=0.0041) (Figure 5 
and Table 1. Calibrated muscle controller parameters after optimization to further 
investigate this issue, the mean muscle activation values of the n=136 muscles 

 are calculated at each timestep (Figure 6). The limited 
consistency of the reflex controller behaviour can be explained by the higher level of 
activation. The used reflex controller implementation with a unique stimulation level in 
combination with high values of  shows excessive behaviour.  

  
Figure 5. Head longitudinal displacement described 
in coordinated of the platform of simulations with 
optimized reflex control (red, solid) and PD control 
(blue dashed) in comparison to experimental target 
line (black dash-dotted). Only the time range of 1.2 
to 2.2 s (white) is considered during optimization. 

Figure 6. Mean muscle activation signals of 
calibrated reflex controller (red, solid) and PD 
controller (blue dashed). Grey shaded areas are not 
considered during calibration process.  
 

Table 1. Calibrated muscle controller parameters after optimization. 

To demonstrate the robustness of the calibration approach, also the parameters of the PD 
controller for another subject in a single take are identified showing slightly different 
muscle controller parameters   and , while the rating 
J is similar with a value of 0.0054, indicating good convergence. Due to the modularized 

Reflex controller    in s J 
0.0896 0.0154 0.1084 0.0098 

PD controller    in s J 
0.448 0.05 0.1032 0.0041 
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structure of the approach, it can be applied for more complex controllers or more 
complex calibration tasks by extending the calculation of cost function to multiple 
signals and/or scenarios as well.  

3.2. Convergence behaviour  

In the following section, the convergence behaviour of the particle swarm optimizer is 
analyzed. For both reflex and PD control, the optimizer finds suitable parameter sets and 
converge to an optimal solution (Figure 7). Starting from a broad swarm contribution in 
the initial population (dark blue), the parameter sets converge to optimal solutions in the 
later populations (red) (Figure 8). In the PD controller with pure particle swarm 
optimization without hybrid function, the parameter kd converges to its lower limit, while 
the values of kp and  are more spread, indicating a good exploration of the result field 
spanned by  and kp. The combined optimization approach of particle swarm optimizer 
with hybrid function fmincon used in the reflex controller shows better convergence 
behaviour towards the local optima, while requiring additional simulation evaluations. 
With the presented approach, a parameter set for one subject take can be identified with 
a total amount of approximately 150 simulations with computational time of 2 min 28 s 
each. In total, a parameter set is found approximately after six to eight hours.  

      
Figure 7. Convergence 
behaviour of the PD controller 
(blue) and reflex controller 
(red). 

Figure 8. Contribution of data points of swarm generations during 
optimization. Initial population (blue) towards last swarm population (red) 
in optimization of PD-controller (left) and reflex-controller (right). 

The expansion of the parameter space should be done cautiously. An expansion of the 
parameter space increases the risk of overfitting, especially if using very few evaluation 
sets to calculate J. 

3.3. Long-Term Stabilization  

Besides the focused phase of reflex behaviour which can be tackled quite well by the 
simple muscle approaches used in this study, a short outline is given to the subsequent 
phase. The performance and suitability for long-term stabilization of the calibrated 
controllers can be investigated in a time corridor that exceeds the one used in the 
optimization process, see the grey area in Figure 5. For the given data set, the calibrated 
PD controller shows good agreement to the experimental results. In contrast, the reflex 
controller seems to be less suited to enable stabilization after the initial phase. 

Nevertheless, if investigating the phase after the reflex in the experimental data, 
there can be identified quite large deviations between the subjects. The simple controller 
definitions are not suited to model all the additional influences which are relevant, as for 
instance the control strategy or target of the individual subject. To further analyze 
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subject-specific differences, additional experimental data with statistical evidence and 
evaluations of important influences is required.  

4. Discussion and Outlook 

The calibration and validation of active human models is a challenging topic due to the 
different requirements of the disciplines. Challenges are: (i) the high reproducibility and 
identification of representative behaviour in experimental tests and (ii) the modelling and 
calibration of the biomechanical models in the simulation. This contribution aims to 
show an approach to combine these separate subtasks in a modular way to empower users 
from different disciplines to improve subtasks.  

In the future, large sets of calibration data with the natural variance in human 
behaviour will become available due to driver monitoring systems for instance. To 
account for this variance in the simulation models as well, semi-automatic calibration of 
individual subjects parameters becomes more prominent. Together with possibilistic 
methods, such as fuzzy valued parameters [4], the variance in experimental result can be 
reproduced based on individually identified parameter sets. 

We presented a subject-specific identification of muscle-level controller parameters 
based on head kinematics gained in volunteer tests performed on a dynamic DiL-
simulator. The DiL-simulator approach allows replicable investigations of driver 
behaviour in Pre-Crash scenarios, with and without the interaction of driver assistance 
systems. The transferability of the driver behaviour gained in the simulator compared to 
drivers in an emergent situation on the road is not finally evaluated. However, the 
presence of different reaction types of drivers in the simulator as well as in real cars 
undergoing an emergent situation is considered likely. We think that methods to address 
these variations can be developed and tested with data gained in the simulator, even if 
no direct transferability is ensured. The calibration process of the muscle-level controller 
using particle swarm optimizer shows good convergence behaviour, usability and good 
agreement in the reflex phase. However, pure muscle level control without any high-
level controller seems to be less suitable for long-term stabilization tasks exceeding the 
human reflex phase. 

Further improvements could be achieved by increasing the level of detail of the 
controller modelling, like different gain factors for each muscle group or a more complex 
cost function. For example, a CORA analysis could be performed to calculate the cost 
function J. Furthermore, a frequency dependency of the muscle controller could be useful 
to enable the emulation of human behaviour which depends on the level of external 
excitation or accelerations [16]. Due to the modelling as muscle-level controller, the 
controllers can be easily deployed in complex FE simulations. For example using the 
extended Hill-type muscle model presented in [17, 9]. 
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