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Abstract. Driver posture monitoring is beneficial for identifying driver physical 
state as well as for optimizing passive safety systems to mitigate injury outcomes 
during collisions. In recent years, depth cameras are increasingly used to monitor 
driver’s posture. However, good driver posture data is missing for developing 
accurate posture recognition methods. In this study, we introduce a method to build 
an in-vehicle driver posture database for training posture recognition algorithms 
based on a depth camera. Driver motion data was collected from 23 participants 
performing both driving and non-driving activities by an optical motion capture 
system Vicon. Motions were reconstructed by creating personalized digital human 
skeletons and applying inverse kinematics approach. By taking advantage of the 
techniques developed in computer graphics, a recorded driver motion can be 
efficiently retargeted to a variety of virtual humans to build a large database 
including synthetic depth images, ground truth labels of body segments and skeletal 
joint centers. Examples from motion reconstruction, data augmentation and 
preliminary posture prediction results are given. 
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1. Introduction 

According to the global status report on road safety released by World Health 

Organization in 2018, road traffic accidents claimed over 1.35 million fatalities and more 
than 50 million serious injuries worldwide each year. In spite of the advances in vehicle 

safety technologies, most of these accidents are still caused by human driver errors [1] 

and therefore could be avoidable. Driver monitoring has been an important research topic 

for many years. Especially with the background of driving automation of level 3 (SAE 

standard), researchers are struggling to find efficient ways to assess driver state and 
develop driving assistance systems that can deal with the human-machine transition in a 

smooth and safe manner [2][3]. Driver posture is an important source of information to 

evaluate driver’s state, such as distraction [4] and inappropriate operation [5]. 

Furthermore, dynamic tracking of driver posture is necessary for developing future 

intelligent restraint systems that can be automatically adapted to driver’s position to 

prevent or reduce injury during collision [6].  
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Recently, thanks to the progress in 3D modeling and depth perception in computer 

vision community, several non-invasive measuring methods for human posture 

recognition have been proposed [7]. As opposed to conventional cameras, depth cameras 
are not subject to varying illumination conditions, color, and texture in the scene and 

most importantly demonstrate a good compromise between real-time performance and 

3D measurement [8]. Thanks to these characteristics, depth cameras have been 

introduced to monitor driver’s upper body posture [2][4][9]. In these studies, Microsoft 

Kinect camera was adopted along with the integrated real-time posture recognition 

algorithm predicting 3D joint positions from a single depth image [10]. This algorithm 
was featured by the classification of body parts using Random Forest classifier [11] 

followed by the estimation of 3D joint positions using Meanshift [12]. Millions of human 

pose depth images with ground truth labels were artificially generated to train the 

algorithm. However, the algorithm was mainly intended for gaming. Training samples 

were collected from entertainment activities, such as dancing, fighting, etc. When 
directly used to monitor drivers, posture recognition suffers due to body occlusions and 

suboptimal camera placement in the vehicle cabin [13]. Therefore, there is a need to 

develop more performant in-vehicle postural monitoring algorithm based on depth 

images. 

A reliable posture recognition algorithm requires a large amount of data samples for 

training and evaluation to avoid overfitting. To facilitate the research of driver posture 
recognition using depth cameras, more and more in-vehicle driver posture databases 

including depth images are now publicly available [14][15][16]. The database in [16] 

even provided drivers’ ground truth motion capture data for reference. One crucial 

information still missing in these databases is the body segmentation label. To annotate 

on depth images of a real driver is challenging. To this end, Yamada et al. [17] dressed 

two drivers with a color-coded T-shirt to generate labeled depth images in order to 
customize the existing posture recognition algorithm [10]. However, the ground truth 

joint centers were not collected in the experiment. Apart from that, this method for 

generating body part labels is time consuming and the T-shirt only covered the trunk and 

arms.  

The aim of this work was to establish a pipeline for creating in-vehicle driver posture 
database necessary for developing driver posture monitoring systems based on a depth 

camera. Our goals for building this pipeline are two-fold. On one hand, the data samples 

generated by this pipeline contain a good coverage of realistic posture variations, more 

specifically the appearance variations in depth images. On the other hand, the ground 

truth labels including body part segmentation and joint centers should be accurately 

obtained in an efficient way.  

2. Materials and method 

Figure 1 presents an overview of the pipeline, which mainly consists of three parts: data 

collection, motion reconstruction and data augmentation. We first perform experiments 

to collect a large set of driver posture data using both a motion capture (mocap) system 

VICON and a Microsoft Kinect. Then, driver motion is reconstructed from the raw 

mocap data using RPx [18], a customized human model based motion analysis and 
simulation tool. A personalized skeleton template is defined and inverse kinematics is 

applied to calculate the orientation and position of each body segment during movement.  
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Although depth images are also collected from the experiment and ground truth joint 

centers are estimated, it is not a good idea to directly use these samples to train the posture 

recognition algorithm due to the complexity in manual body part labeling, because this 
is tedious and cumbersome at best and potentially could lead to label inaccuracy. In 

addition, participants in an experiment are usually dressed with tight gym suits. Thereby 

depth images obtained in lab conditions are clearly different from those in real conditions. 

Inspired by the work in [10], we resort to data augmentation by means of computer 

graphics techniques to obtain a large number of synthetic depth images covering a wide 

variety of driver postures and more importantly to simplify the collection of the ground 
truth labels. The basic idea is to animate rigged virtual human characters with realistic 

external envelopes including skin, clothes, hair and predefined body part labels using 

reconstructed motions captured in lab condition. This allows us to synthesize artificial 

depth images by rendering and meanwhile provides ground truth labels including body 

part segmentation and joint centers. The virtual human characters are created in 
MakeHuman (MH) [19], an open source tool designed to prototype realistic 3D human 

models. The motion retargeting, image rendering and data recording process are 

performed in MAYA [20], a 3D computer animation, modeling, simulation, and 

rendering software. 

 

Figure 1. Overview of proposed pipeline. 

2.1. Driver motion data collection 

Twenty-three drivers (12 males and 11 females) with driving experience, ranged in age 
from 22 to 65 years, in height from 153 cm to 195 cm, in Body Mass Index (BMI) from 

18.2 kg/m2 to 43.4 kg/m2, took part in this study. All participants provided written 

informed consent prior to participation in this study. The experimental protocol was 

approved by the ethical committee of Gustave Eiffel University (formerly known as 

French Institute of Science and Technology for Transport, Development and Networks). 
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We captured motions corresponding to 42 representative in-vehicle driver activities 

with reference to the work in [21]. They included primary driving operations, such as 

switching gear, turning steering wheel, etc., common secondary behaviors, such as 
interacting with phone, reading the dashboard, etc., and non-driving activities that might 

be present in autonomous vehicles, such as holding a book with both hands, relaxing both 

feet on the floor, etc. During experiment, participants were instructed to perform these 

tasks one by one on an experimental mockup (Figure 2a).  

A motion capture system Vicon Giganet® MXT (Vicon Motion Systems, Oxford, 

United Kingdom) with 14 infrared cameras was used to track reflective markers placed 
on participants (Figure 2b) at a frequency of 50 Hz. A Microsoft Kinect camera was 

placed right front of the driver to observe upper body posture through depth perception 

with a frequency of 25 Hz. The synchronization between two systems was realized by an 

electronic trigger. 

 

Figure 2. Experimental mockup (b) and marker arrangement (a). 

2.2. Motion reconstruction 

From measured marker trajectories, body motion was reconstructed using RPx. First, a 
subject specific articulated skeleton was created for each participant from a reference 

standing posture (Figure 3a). The joint positions related to hips, spine, shoulders and 

neck were estimated by statistical models [22][23]. Regarding limbs and head, joint 

positions were simply determined as the center of the marker pair attached close to the 

target joint or body part. Once the personalized skeleton template was created, joint 

angles were calculated by minimizing the distance between model based marker 
positions and measured ones (Figure 3b). Note that the real hand gestures of the 

participants were not collected in detail. The default hand gesture from RPx was adopted 

for all participants. Refer to [24][25][26] for more details. Motion reconstruction process 

was implemented in Matlab. 
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Figure 3. Personalized skeleton template (a) and RPx motion reconstruction module (b). 

2.3. MH human character 

The basic human character in MakeHuman was composed of a rigged skeleton and a skin 

mesh that forms the body surface shape. The skeleton (Figure 4 left) was linked to the 

mesh (Figure 4 middle) using the linear blend skinning technique available in the Blender 

software [27] so that changes of joint positions led to an adaptation of skin mesh. To 

impersonate the real participants, the attributes for each virtual model (e.g., age, gender, 

weight, height, body proportion etc.) were adjusted according to subject’s anthropometry 
measurements. We also randomly configured clothes and hairstyle materials for each 

base character to yield more realistic driver appearances in depth images. We defined 30 

color-coded body parts that densely cover the body, as suggested by [10]. These parts 

were specified in a texture map that can be applied to the body skin of different models 

(Figure 4 right). The resulting models were exported in standard FBX files that can be 

seamlessly manipulated in MAYA. 

   

Figure 4. Digital human models for each participant. Skeleton (left), body shape with clothes and hair 

(middle) and body shape with segmentation labels on the skin (right). 

2.4. Synthetic data generation 

The reconstructed motion data including the RPx skeleton template and joint angles were 

recompiled using mel (the scripting language of MAYA) so that they were compatible 

with the animation engine in MAYA. With help of Autodesk® HumanIK® (HIK) 
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animation middleware (a full-body inverse kinematics (IK) solver and retargeter), the 

motion of RPx skeleton could be easily retargeted to MH skeleton.  

Since the clothes would shadow the colors attached to the body skin during rendering, 
we mapped the same texture onto various clothes in MAYA UV editor as to the body 

skin in MH, so that the body segmentation labels were consistent across different 

characters dressed with different clothes (Figure 5).  

    

Figure 5. Body segmentation labels from skin and clothes. 

During animation, the scene was rendered into color and depth images by using 

Arnold Renderer for MAYA (an advanced Monte Carlo ray tracing renderer) and the 

joint centers were recorded. In addition, we marked some key points on the head with 

the expectation that these points could be useful for monitoring head orientation. The 

motion retargeting, image rendering and data recording in MAYA were automatized by 

a hybrid programming of Python and mel.  

3. Results  

The motion database consists of approximately 2.4 Million frames in the driver motion 

sequences. Figure 6 gives one example after motion reconstruction. The reconstructed 

postures were from a motion when the driver moved the left foot and right hand to switch 

gear. The joint angles of left hip (GHUL) and the positions of left foot (GFBL) during 

motion are plotted.  

 

Figure 6. Motion reconstruction. 
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Figure 7 shows an example where we retargeted the real driver motion when 

reaching the phone with right hand onto a MH character. The generated depth images, 

body segmentation color labels and skeletal joint centers are given. 

 

Figure 7. Data augmentation. 

Given the synthetic dataset generated by the proposed pipeline, we adapted the 

algorithm from [10] and extracted some key joint centers and key points for prediction. 
As mentioned before, this algorithm transformes the body segmentation as a per-pixel 

classification task. After identifying the relevant body parts, the joint centers beneath the 

mesh surface and key points on the head could be directly inferred. Assume that the 

background is subtracted, our algorithm could discern different body parts and predict 

driver’s posture from a depth image and an example is shown in Figure 8. Note that the 
lower body parts are merged into a single part annotated by white color and fall out of 

our interest, because they are practically invisible by a single camera in a real car.  

 

Figure 8. An example of posture recognition. 

4. Discussion and conclusion 

The aim of this paper is to introduce a pipeline to generate diver posture depth images 

and high quality ground truth labels required by the development of in-vehicle posture 
recognition algorithms. The pipeline is built by taking advantage of existing techniques 
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including RPx, MakeHuman and MAYA. Results show that real driver motions can be 

reliably reconstructed even when some markers were missing and synthetic dataset 

including realistic depth images and accurate ground truth labels can be generated in an 
efficient manner. Compared to the publicly existing driver posture databases 

[14][15][16], the dataset generated by this pipeline contains more information including 

complete ground truth labels for depth images. In contrast to the T-shirt method used in 

[17], the data augmentation process proposed in the present work allows us to obtain the 

body part labels more efficiently.  

It should be noted that the motion retargeting in MAYA is not limited inbetween the 
MakeHuman character and mocap character of the same participant, although this was 

performed in this work. Theoretically and technically, motion retargeting can be 

performed across different participants. By generating more characters in MakeHuman, 

the dataset can be potentially enlarged to an infinitive scale based on the limited mocap 

data.  
Another advantage of data augmentation is that the virtual environment provides us 

the opportunity to find the optimum depth camera position in the vehicle cabin, as 

proposed by Plantard et al. [28].  

The main limitation of the proposed pipeline lies in the nature of marker-based 

optical motion capture system. In order to reduce relative movement of markers with 

respect to body segment, participants were required to dress with tight gym suits and 
markers were directly attached to the skin. In addition, the seatbelt was not used. In the 

motion retargeting and animation process, the clothes deformed in accordance with the 

skeletal posture of the character but not vice versa. Therefore, possible effects of clothing 

were not considered in the present study.  

In addition, realistic driving operations were not imposed on the experimental 

mockup. Although we designed 42 different trials for participants to simulate the real 
driver motions in various scenarios, this list was by no means exhaustive. In fact, to cover 

all the driver motions in realistic driving conditions is not possible and also not our 

primary goal. According to [10], a wide range of posture combinations of different body 

parts would be sufficient for generalizing the prediction model to unseen postures.  

More research will be performed to further improve the data augmentation process 
including the segmentation layout of body parts, the integration of driver hand gesture 

details, etc. In addition, the driver posture recognition algorithm trained on the synthetic 

dataset will be tested on the real depth images collected from the experiment. 
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