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Abstract. Many digital human model applications are based on optimal control
simulations of the musculoskeletal system. These simulations usually involve the
derivatives of the underlying kinematic and dynamic model, which are in general
not easy to derive analytically. In the direct transcription method DMOCC, we use
the discrete Euler-Lagrange equations together with a discrete null space matrix
and a nodal reparametrization, which are embedded into a constrained optimization
problem. The abstract and formalizable structure of this method offers many possi-
bilities for automation. Therefore, we use the CasADi nonlinear optimization and
algorithmic differentiation tool to automatically derive the discrete Euler-Lagrange
equation and a valid discrete null space matrix. This allows us an efficient and easy
implementation of the DMOCC method for large multibody systems.
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1. Introduction

The representation of musculoskeletal systems with multibody dynamics and cable-like
muscles has become an essential tool to analyse human movement [1]. The actuation of
these models via Hill muscles requires the calculation of the muscle paths, their lengths
and changes in length during the movement, which is determined by the muscle wrap-
ping problem [2,3]. In order to model and solve complex human motion tasks, an appeal-
ing approach is to formulate optimal control problems and to approximate their solution
numerically. The development of automatic differentiation in resent years reveals effi-
cient ways to create and solve these optimal control problems, which we make use of in
this paper. We thereby focus on an automatic generation of the discrete Euler-Lagrange
equations and the discrete null space matrix, see [4–6].

When simulating the dynamics of musculoskeletal systems, we formulate the dy-
namics of multibody system representing bones and joints and the dynamic muscle
paths [2, 3, 7, 8], which wrap smoothly over adjacent obstacles, in terms of discrete La-
grange mechanics [4–6]. Setting up new musculoskeletal models in the present formula-
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tion is an abstract, formalizable process that offers a wide range of options for automa-
tion. In particular for open kinematic chains, we use a discrete null space matrix and a
nodal reparametrization of the unknowns (redundant director based coordinates) via in-
cremental generalized coordinates in order to reduce the dimension of the system size in
two steps [5, 6].

Note that the discrete null space matrix is not unique and can be found in differ-
ent ways [5, 6]. In fact, a particularly elegant way is to represent the discrete null space
matrix as the Jacobian of the nodal reparametrization, which describes the kinematics
of the multibody system. This Jacobian can be calculated using automatic differentia-
tion. Consequently, since higher order derivative information is needed anyway for the
optimisation tasks, this offers opportunities for simplifying and automating the model
creation.

Efficient methods for the implementation of the discrete Euler–Lagrange equations
for generic mechanical systems with tree structured, rigid multibody system are shown
in [9–11]. The benefits of a derivation of the underlying system dynamic with automatic
differentiation has for example been shown in [12]. The idea of this work is to generate
the discrete Euler-Lagrange equations, the discrete null space matrix and all higher order
derivatives for the direct transcription method discrete mechanics and optimal control for
constrained systems (DMOCC) [13] with the help of automatic differentiation. This sig-
nificantly shortens and simplifies model creation compared to manual implementations.
The interaction of the skeleton with the muscles and the contact formulation is currently
formulated in detail in another paper.

CasADi [14] is an open-source tool for nonlinear optimization and algorithmic dif-
ferentiation that provides an easy framework for the implementation of the DMOCC
method. Here, the director formulation allows us a very modular and automated design
of discrete Euler-Lagrange equations, once the discrete Lagrangian of the system and a
nodal reparametrisation are setup. The derivatives of these functions, i.e. the variational
integrator, can easily be nested into the nonlinear optimization program with CasADi.

2. Method

The main objective of the simulations in this work is the control of a musculoskeletal
system, which must be steered from a given initial state to a predefined final state. There-
fore, we apply the DMOCC formulation [13] to a biomechanical system, where bones
and joints are represented as multibody system [5, 6] and the muscle path is modelled as
the shortest connection between two points on obstacle surfaces [2,3]. As a result of that,
the infinite dimensional optimal control problem is transcribed into a finite dimensional
nonlinear programming problem that can be solved by any suitable standard algorithm.

2.1. Musculoskeletal Optimal Control Problem

To solve the optimization problem, we require higher order derivatives of the underlying
dynamical system. The implementation these derivatives by hand is generally not an easy
task. In addition, derivations are required for the discrete Euler-Lagrange equations and
the discrete null space matrix. Consequently, the automation of all derivatives brings a
great advantage for the creation and solution of optimal control problems.
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2.1.1. Constrained Optimization Problem

The DMOCC [13] method can be summarized as

min
xxxd

Jd(xxxd)

subject to
· discrete Euler-Lagrange equations
· boundary and path conditions

where xxxd = {xxxn}N
n=0 is the discrete optimisation vector with N ∈N, Jd is the discrete ob-

jective function, that is to be minimized subject to the discrete Euler-Lagrange equations
of the system and further boundary and path conditions.

2.1.2. Discrete Euler-Lagrange Equations of the Musculoskeletal System

In our model, the discrete path qqqd = {qqqn}N
n=0 is an approximation of the continuous path

on a discrete time grid with constant time step Δt ∈R and N+1 time nodes. The discrete
muscle path vector γγγd = {{γγγk,n}K

k=0 }N
n=0 is defined on a discrete arc length grid with

fixed arc length fraction Δs ∈R with K ∈N and K+1 nodes. Note that, we have to solve
for all K−1 unknown muscle path configurations γγγk,n at every time node.

We further choose the midpoint quadrature and finite differences to specify the dis-
crete Lagrangian [4] for the mechanical system Ld and the geodesic Lγ . In addition,
we use the discrete null space matrix PPPd(qqqn) and the nodal reparametrisation qqqn+1 =
FFFd(uuun+1,qqqn) in terms of discrete local coordinate uuun, see [5, 6]. The surface constraint
function φd(qqqn,γγγk) and the integrals of the scalar product of the constraints and the La-
grange multipliers μk,n are approximated in a similar way. This leads to the following
discrete Euler-Lagrange equations

PPPd(qqqn)
T ·

[
∂Ld(qqqn−1,qqqn)

∂qqqn
+

∂Ld(qqqn,qqqn+1)

∂qqqn
− ∂φd(γγγk,qqqn)

∂qqqn

T

·μk,n

]
= 0 (2)

∂Lγ(γγγk−1,γγγk)

∂γγγk
+

∂Lγ(γγγk,γγγk+1)

∂γγγk
− ∂φd(γγγk,qqqn)

∂γγγk

T

·μk,n = 0 (3)

φd(γγγk,qqqn) = 0

for 0 < n < N and 0 < k < K, see [7, 8].

2.2. Automatic Derivation of the System Equations

The first step in creating a multibody simulation model, is the definition of the number,
shape and connection of the rigid bodies. Knowing the dimensions, weight and location
of every rigid body, one can easily define the Lagrangian of the system. The coupling of
rigid bodies is achieved via configuration constraints that form a kinematic chain. The
augmentation of the Lagrangian and discretization of Hamilton’s principle then leads to
time stepping equations that inherit certain characteristic properties of the continuous
solution, the discrete Euler-Lagrange equations. To reduce the dimension of the resulting
equations, it is possible to apply a discrete null space matrix and a nodal reparametriza-
tion [4–6].
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This is an abstract and formalizable process that offers a wide range of options for
automation. The main tasks here are the derivation of the Euler-Lagrange equations and
the derivation of a null space matrix. Within this work, we use MATLAB for the im-
plementation of the examples. Thereby, our formulation supports the null space method
with a user defined reparametrization for oben kinematics chains and is internally based
on CasADi [14].

2.2.1. Derivation of the Euler-Lagrange Equations

Lets consider a multibody system consisting of a kinematic chain with b rigid bodies.
This yields a 12b-dimensional configuration variable

qqq(t) =

⎡⎢⎣qqq1

...
qqqb

⎤⎥⎦ ∈ R12b. (4)

with qqqβ , β = 1, . . . ,b representing the redundant coordinates of a rigid bodies. The La-
grangian of the system

L (qqq, q̇qq) = T (qqq, q̇qq)−V (qqq) (5)

is composed by the kinetic energy T (qqq, q̇qq) and potential energy V (qqq), where q̇qq(t) ∈
R12b is the velocity of the system. Approximating the integral over the Lagrangian in
the interval [tn, tn+1] via midpoint quadrature and finite differences, yield the discrete
Lagrangian

Ld(qqqn,qqqn+1) = ΔtL

((
qqqn+1 +qqqn

2

)
,

(
qqqn+1−qqqn

Δt

))
(6)

where qqqn is approximating qqq(tn). Whit the mass matrix MMM and the gravity vector ggg of
right dimension, the first derivatives of the discrete Lagrangian contribute to the discrete
Euler-Lagrange equations and hence the variational integrator. A pseudo code in a syntax
similar to MATLAB can be read as

1 f u n c t i o n [ L d ] = d L a g r a n g i a n ( q n , q np1 )
2 q = ( q np1+ q n ) / 2 ;
3 q d o t = ( q n −q np1 ) / d t ;
4 L d = d t * ( q do t ’*M* q d o t / 2 − q ’ *M*g ) ;
5 end
6

7 i m p o r t c a s a d i . *
8 q np1 = MX. sym ( ’ qnp1 ’ , n u m b e r o f b o d i e s * 1 2 , 1 ) ;
9 q n = MX. sym ( ’ qn ’ , n u m b e r o f b o d i e s * 1 2 , 1 ) ;

10 q nm1 = MX. sym ( ’qnm1 ’ , n u m b e r o f b o d i e s * 1 2 , 1 ) ;
11

12 d E u l e r L a g r a n g e = c a s a d i . F u n c t i o n ( ’DEL ’ ,{ q nm1 , q n , q np1 } , . . .
13 { g r a d i e n t ( d L a g r a n g i a n ( q n , q np1 ) , q n ) + . . .
14 g r a d i e n t ( d L a g r a n g i a n ( q nm1 , q n ) , q n ) } ) ;
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The discrete Euler-Lagrange equations d_EulerLagrange(q_nm1,q_n,q_np1) are a
function of three consecutive configurations, which can easily be nested to the con-
strained optimization problem. Thereby, CasADi provides the functionality to take fur-
ther higher-order derivatives of the discrete Euler-Lagrange equations and to generate
C code from them.

2.2.2. Derivation of the Null Space Matrix for Open Kinematic Chains

Lets now assume that the b rigid bodies are connected via b− 1 joints and one anchor,
such that the incremental update function reads

qqqn+1 = FFFd(uuun+1,qqqn) =

⎡⎢⎣FFF1
d(uuun+1,qqqn)

...
FFFb

d(uuun+1,qqqn)

⎤⎥⎦ ∈ R12b (7)

with Fα
d , α = 1, . . . ,b. The entries of the incremental coordinate uuun represent the degrees

of freedom of all kinematic pairs in the chain. The total degrees of freedom DoF define
the dimension of the discrete local coordinate, i.e. uuun ∈ RDoF . The first rigid body of
every kinetic chain is assumed to be either anchored or free in space. In this setup, the
Jacobian of the nodal reparametrization

PPPd(qqqn) =
∂FFFd(uuun+1,qqqn)

∂uuun+1

∣∣∣∣
uuun+1=000

(8)

evaluated at qqqn is a suitable null space matrix. A pseudo code can be read as

1 f u n c t i o n [ F d ] = n Reparam ( u np1 , q n )
2 F d = [ F 1 ( u np1 , q n ) ; . . .
3 . . .
4 F b ( u np1 , q n ) ] ;
5 end
6

7 i m p o r t c a s a d i . *
8 u np1 = MX. sym ( ’ unp1 ’ ,DoF , 1 ) ;
9 q n = MX. sym ( ’ qn ’ , n u m b e r o f b o d i e s * 1 2 , 1 ) ;

10

11 d N u l l S p a c e = c a s a d i . F u n c t i o n ( ’P ’ ,{ u np1 , q n } , . . .
12 { j a c o b i a n ( n Reparam ( u np1 , q n ) , u np1 ) } ) ;

Thereby, the properties of the reparametrization are to be defined by the user. This gives
our implementation a maximum of flexibility, while standard connections can be pro-
vided by a library. The function d_NullSpace(u_np1,q_n) is calculated in a pre-
processing step and is hand over to the optimization problem.

3. Results

We show two examples of musculoskeletal optimal control simulations. While the first
example serves as validation with simplified complexity, a model of the kinematic model
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of the upper body is presented in the second example. As mentioned before, we use
the direct transcription method DMOCC to transcribe the optimal control problem into
a nonlinear program that adopts the properties of structure preserving integrators. The
constrained optimisation problem is solved via IPOPT [15]. Alternately, fmincon or to
search for global optima multistart [16] from MATLAB can be used.

3.1. Two Muscle Arm Model

In this example (Figure 1), the multibody system consists of two rigid bodies and a
revolute joint, which represent the upper and lower arm connected by the elbow joint.
The upper arm is fixed in space, the configuration of the lower arm is given as qqq =
[xxxs,ddd1,ddd2,ddd3]

T ∈ R12, nnn ∈ R3 is the joint axis and ρρρ ∈ R3 is the joint location. The
centre of mass is given by the vector xxxs(t) ∈ R3 and the orientation is indicated by an
orthonormal body frame dddI(t) ∈ R3 with I = 1,2,3 spanning a rotation matrix. In this
example, the dynamics are discretized with N = 50 time nodes and the muscle path is
discretized with K = 20 nodes per muscles. Furthermore, the nodal reparametrization in
terms of the rotational degree of freedom θθθ n = unnnn is given as

FFFd(un+1,qqqn) =

[
xxxs− cay(θ̂θθ n+1) ·ρρρn

cay(θ̂θθ n+1) ·dddIn

]
(9)

where we use the Cayley map cay : so(3)→ SO(3). Herein (̂•) ∈ so(3) denotes a skew-
symmetric matrix. We use the Cayley map because the differentiation of the Rodrigues
formula for the evaluation of the exponential map does not work easily with automatic
differentiation. The model comprise two muscles (biceps, triceps) and the actuation is
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Figure 1. Configuration, joint angle change and muscle length evolution of the two muscle arm model2 for a
rest-to-rest manoeuvre are shown. The muscle path is plotted in red and the revolute joint is marked in blue.
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realized by Hill-type muscle forces, similar to [2]. We solve a rest-to-rest manoeuvre
from a given initial state to a predefined final state. The gradient, Jacobian and Hessian
information for the optimization problem in IPOPT is carried out by CasADi. The incre-
mental joint angle change and the muscle length evolution are shown in Figure 1 on the
right side. The results show that the integrator and the optimal control simulation with
the automatic differentiation work as expected. Due to the structure preserving properties
of the integrator, the simulation works robustly even with coarse discretizations.

3.2. Upper Body Kinematic Model

The second multibody system comprises a kinematic chain with b = 9 rigid bodies,
8 joints and 12 degrees of freedom. Figure 2 shows the numbering of the rigid body and
the joint list. The torso (β = 1) is fixed in space and is connected to the right humerus
(β = 2) and left humerus (β = 6) via spherical joints, with θθθ {2,6}n ∈ R3. The ulna of
the right arm (β = 3) and left arm (β = 7) is connected to the respective humerus via
revolute joints, where u{3,7}n ∈ R. Between the right (β = 4) and left (β = 8) radius and
ulna, a revolute joint with u{4,8}n ∈ R is defined respectively. The right hand (β = 5) and
the left hand (β = 9) are connected via revolute joints with u{5,9}n ∈ R to the respective
radius. The rotation of a revolute joint θθθ n = unnnn follows with the definition of the joint
axis nnn and the joint location of the α-th joint with respect to the β -th body is given as ρρρβ

α .
With respect to Eq. (7) the mapping for the fixed torso reads[

xxx1
sn+1

ddd1
In+1

]
=

[
xxx1

sn

ddd1
In

]
(10)

for I = 1,2,3. The mapping for the right arm with bodies β = {2,3,4,5} reads

⎡⎣ xxxβ
sn+1

dddβ
In+1

⎤⎦=

⎡⎢⎣xxxβ−1
sn+1 + cay(̂θθθ β−1

n+1 ) ·
(

ρρρβ−1
β − cay(̂θθθ β

n+1) ·ρρρβ
β

)
cay(̂θθθ β

n+1) ·dddβ
In

⎤⎥⎦ (11)

where I = 1,2,3. The mapping for the left arm with bodies β = {6,7,8,9} follows in the
same way. The definition of the kinematic tree – with all rigid bodies and joints – and with
that the reparametrization completes the model setup. No additional assembly of a null
space matrix is necessary. With that, the extension of the DMOCC method to kinematic
trees with a relatively large number of bodies is now much easier than through manual
implementation. The next step is to automate the derivation of muscle path equations in
a similar way.

4. Discussion

This work focuses on the definition and implementation of the discrete Euler-Lagrange
equations for open kinematic chains with automatic differentiation, which are used to de-

2For the 3d bone model see https://www.thingiverse.com/thing:1543880.
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Figure 2. The configuration and the kinematic tree for the upper body model2 is shown. The model comprises
9 rigid bodies with 12 degrees of freedom.

fine optimal control problems with DMOCC. All necessary derivatives were carried out
with the help of the nonlinear optimization and algorithmic differentiation tool CasADi.
This not only simplifies the solution to the optimization problem, but also the model
creation benefits from that. In particular, we use a user defined reparametrization to cal-
culate the discrete null space matrix for which no separate implementation is required.
This simplifies and accelerates the creation and solution of the optimization problems
transcribed by DMOCC.

By using CasADi to calculate the discrete null space matrix, it is possible to auto-
mate and simplify one of the most challenging tasks in our model assembly. Usually,
the null space matrix PPPd(qqqn) ∈ R12b×DoF has to be assembled by traversing piecewise
through the kinematic chain or has to be implemented by hand. Furthermore, the dis-
crete Euler-Lagrange equations in Eqs. (2) and (3) are based on a nodal reparametriza-
tion FFFd ∈ R12b, which defines a suitable null space matrix by calculating its Jacobian.
Thus, an additional implementation of the 12b×DoF dimensional null space matrix
is no longer necessary. Since the reparametrization remains definable by the user, our
formulation also remains very flexible.

However, the presented method is limited to open kinematic chains and difficulties
may arrive for practical application with inherent closed chains in the human skeleton,
e.g. the shoulder girdle, forearm, grasping. However, for closed kinematic chains, one
can formulate the open loop system a null space matrix and formulate an additional
closure constraint. This procedure will still be much more efficient than formulating the
complete system without a null space reduction. Our next steps include musculoskeletal
optimal control simulations with a relative large number of rigid bodies (for example
the upper body), muscles and general smooth wrapping surfaces that perform certain
movement tasks. Therefore, we will automate the derivation of muscle path equations
and contact formulation in a similar way.
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method using natural geodesic variations. Multibody System Dynamics, 2016, 36(2):195–219.

[4] Marsden JE, West W. Discrete mechanics and variational integrators. Acta Numerica, 2001, 10:357–
514.

[5] Betsch P, Leyendecker S. The discrete null space method for the energy consistent integration of con-
strained mechanical systems. Part II: Multibody dynamics. International journal for numerical methods
in engineering, 2006, 67(4):499–552.

[6] Leyendecker S, Marsden JE, Ortiz M. Variational integrators for constrained dynamical systems.
ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und
Mechanik: Applied Mathematics and Mechanics, 2008,88(9):677–708.

[7] Penner J, Leyendecker S. Multi-Obstacle Muscle Wrapping Based on a Discrete Variational Principle.
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