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Abstract. Natural human locomotion contains variations, which are important for
creating realistic animations. Most of all when simulating a group of avatars, the
resulting motions will appear robotic and not natural anymore if all avatars are
simulated with the same walk cycle. While there is a lot of research work focusing
on high-quality, interactive motion synthesis the same work does not include rich
variations in the generated motion. We propose a novel approach to high-quality,
interactive and variational motion synthesis. We successfully integrated concepts of
variational autoencoders in a fully-connected network. Our approach can learn the
dataset intrinsic variation inside the hidden layers. Different hyperparameters are
evaluated, including the number of variational layers and the frequency of random
sampling during motion generation. We demonstrate that our approach can generate
smooth animations including highly visible temporal and spatial variations and can
be utilized for reactive online locomotion synthesis.
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1. Introduction

Human locomotion is composed out of two characteristics: consistency and variation. It
is quite often considered as a cyclic problem (e.g., [1, 2, 3]), as consecutive steps are quite
similar while walking with the same velocity and direction. On the other hand, it is very
hard for humans to accurately replicate the same motion twice. Hence every step during
locomotion is slightly different. In order to generate natural locomotion animations, it is
not only important to accurately and fluently replicate the mean motion but to generate
the intrinsic variation as well. In a third-person gaming context, this might not be a major
issue, as the user is controlling the avatar and thus is incorporating a certain amount
of variation due to his input. However, as soon as the avatar is perceived for a long
time with the same input (e.g. walking straight ahead) or is displayed from an outside
angle, the lack of variation becomes apparent. This problem increases with the number
of avatars using the same type of locomotion variation. In this case, even a very natural
locomotion clip will appear robotic and unnatural. In the gaming context, for example,
different walk-cycles are generated and randomly assigned to different avatars in order
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to diminish this effect. Considering advanced motion synthesis techniques, this approach
is rarely possible.

The recent publications for reactive motion synthesis (e.g. [2, 3, 4]) generate mo-
tions of very high quality, but these approaches usually lack variability due to their deter-
ministic nature. Given the same initialization and user input, all motions will appear the
same. In novel application fields, like a digital reality [5] simulating pedestrian agents
for testing autonomous driving systems, the variation is not only preferred but highly
required. If an autonomous vehicle is trained or validated in a virtual scene using avatars
with only a single animation clip, the systems will overfit or only be proven to work with
this single animation. Hence, it is necessary to accurately replicate the variation apparent
in reality.

Although there are already approaches using variational autoencoders, they lack ei-
ther the ability to control the motion synthesis [6] or the fidelity of the generated mo-
tion is not comparable with the results of state-of-the-art models [7]. Currently, the most
promising work for locomotion synthesis are Feedforward Interpolating Neural Net-
works (FINN). These networks consist of a core motion network and an interpolation
method [2, 3, 8]. The core motion network is a fully connected neural network and per-
forms the regression step from the current to the next frame (feedforward step). The inter-
polation method is used to generate the optimal network weights of the motion network
for the current regression step.

In this work, we are presenting a novel approach adapting the core motion network
of a FINN to learn and reproduce the variation intrinsic to the training data while re-
taining the motion quality and responsiveness. Similar to a variational autoencoder the
parameters of a hidden layer are considered to correspond to the mean and variance of a
normal distribution. During model training as well as during motion synthesis, a random
variable is sampled from a normal distribution and scaled by the parameter. Hence the
model can learn the distribution inherent to the motion capture training dataset inside the
hidden layer. The approach is based on a phase-functioned neural network [2]. We eval-
uated the impact of different numbers and positions of variational layers inside the net-
work against adding random noise and a vanilla phase-functioned neural network. Our
approach greatly increases the inter- and intra-individual variation of locomotion, while
retaining the quality and naturalness of the original motion. This work has the following
contributions:

• a novel approach of Variational Interpolating Neural Networks (VINN) is pre-
sented,

• evaluation of the impact of multiple hidden distributions in a single variational
network,

• novel insights for the usage of variational generative networks with a high frame
rate,

• novel approach to the evaluation of the variation of generated motions.

2. Background

2.1. Data-Driven Motion Synthesis

Motion capturing produces natural and high-quality motions that can be used to train
data-driven synthesis models. Kovar et al. [9] used motion clips from a dataset and build
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a motion graph encoding the different possibilities to reassemble the original clips. A
constrained graph walk can generate target-specific animations based on the control in-
put. There are multiple extensions for motion graphs, e.g. [10, 11]. Lee et al. [4] encode
individual frames as motion states and model all possible transitions using a motion field
rather than a graph. A Markov decision process (MDP) is built to model the possible
decisions in terms of actions for each motion state. Motion synthesis can be considered
as a concatenation of individual discrete poses over time. Using simple fully-connected
regression models to reproduce this time-series data suffers from pose averaging. Similar
intermediate poses in different sequences, e.g. when both legs are crossing each other in a
walk cycle, are averaged and prevent a natural transition of frames. Due to missing infor-
mation on the recent past, the network can become unable to distinguish the foot going
forward and does not accurately continue the walk cycle. There are different approaches,
trying to solve this problem using recurrent neural networks (RNNs) [12, 13, 14]. How-
ever, training RNNs reportedly is very complex, time-consuming, and uncontrolled gen-
eration of motion using RNNs suffers from dying out of motion and accumulation of
error [12, 13, 2].

Recently, [2] proposed a novel network architecture that interpolates the network
weights depending on the phase of the walk cycle. This methodology was further ex-
tended by [3] to generate complex quadruplet motion of dogs. A prove of concept of the
same idea for reach motions was recently published by [15]. All of these approaches have
in common, that the network weights of the regression network are interpolated and use
a similar, fully-connected network structure for motion synthesis. While these forward
interpolating neural networks (FINN) are providing a natural motion synthesis that can
be controlled responsively, they are deterministic by nature and unable to create varia-
tions in the generated motion. Although the animation of a single avatar appears convinc-
ing, the animation of multiple avatars appears highly unnatural and robotic. Therefore,
including natural variations as a statistical model is attractive for crowd animation and
realistic simulation.

2.2. Statistical Motion Modeling

Another trend of approaches for motion synthesis task is to learn the distribution from
motion capture data. The new motions can be generated by sampling and optimizing
the learned distribution based on constraints. Many conventional models have been used
to model the motion distribution, for instance, the variants of Hidden Markov Models
(HMMs) [16, 17, 18], Gaussian Mixture Models (GMMs) in low-dimensional space [10,
19, 11, 20] and Gaussian Processes (GP) and its many variants for temporal variations
[21, 22, 23]. Min and Chai [11] combine a motion graph [9] with statistical motion
modeling. The motion data is modeled as a directed graph with each node being a cluster
of semantically and structurally similar motion clips. Each edge in the graph represents
the possible transition between clips. Motion clips in each motion primitive are projected
into low-dimensional space and a GMM is used to learn the distribution. The transitions
between motion primitives are modeled by Gaussian Processes. Recently, variational
autoencoders (VAE) have been proposed as non-parametric, unsupervised approaches
for manifold learning. Since it is a non-parametric model, no prior knowledge about data
distribution is assumed. It uses the computational power of neural networks to learn a
transform from a normal distribution to any kind of complex distribution. Holden et al.
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Figure 1. Network Structure using three Variational Layers (var1n2n3). A single sample is drawn from a
normal distribution and used to scale the trained distribution in the hidden layers.

[24] first apply convolutional autoencoders to learn a continuous manifold space for a
large, heterogeneous motion database. Other solutions are combining VAE with long
short-term memory nodes (LSTM) [7] to model and predict motion sequences. These
models, however, cannot model the high-level control of a user intuitively.

3. Variational Interpolating Neural Networks (VINN)

By considering animation as a concatenation of individual poses, we can consider the
whole process as a time-series problem where each individual step can be predicted by
a regression model. In order to allow a user to control the motion generation, a separate
imperative controller is required, storing the global state of the avatar. Considering fully
connected or feedforward interpolating neural networks, a single latent representation
performs the regression steps deterministically. We propose a novel approach for learning
not a single representation, but the distribution present in the training data. The approach
is built upon a phase-functioned neural network ([2]), one of the state-of-the-art models
for locomotion synthesis.

3.1. Neural Network Structure

For a single variational layer, the output of a fully connected layer is split into the mean
(μ) and the standard deviation (σ ) of a normal distribution. The output of the layer is
computed by drawing a normal distributed variable ε ∼ N(0,1) and scaling it by the
values computed in the fully connected layer:

v(μ,σ ,ε) = μ + ε ·σ (1)

Using a suitable split function to separate the mean and standard deviation (e.g.
split(x) = (x[0 : 0.5 · |x|],x[0.5 · |x| : |x|])), a single variational layer for an input vector x,
weights W and bias b can be defined as

VAR(x,W,b) = v(split(Wx+b)) (2)
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Using the exponential rectified linear function [25] as an activation function, the
variational layer can be written as:

VAR(e)(W,b,x) = v(split(ELU(Wx+b))) (3)

Given an input parameter x ∈ R
n, output parameters y ∈ R

m and a phase parameter
p ∈ R, we construct a three layer network as visualized in figure 1.
Mathematically, the network can be described as

Φ(x;A) = VAR3(W2,b2,VAR(e)
2 (W1,b1,VAR(e)

1 (W0,b0,x))) (4)

A network model A can be completely defined by A = {W0 ∈ R
2h×n,W1 ∈

R
2h×h,W2 ∈ R

m×h,b0 ∈ R
2h,b1 ∈ R

2h,b2 ∈ R
m}. Here, h = 512 is the size of hidden

state, n = 301 is the dimension of the input vector and m = 245 the dimension of the
output vector. Similar to [2] we are employing a phase-functioned structure on this net-
work. Hence, the network weights are computed by a phase function before each re-
gression step, depending on the phase and the input parameters θ . In this case, a cyclic
cubic Catmull-Rom spline is chosen as the phase function, using for control points
θ = {α0 α1 α2 α3}. A definition of this function is shown in the appendix eq. (9).

3.2. Number of Variational Layers and Dimensionality of Random Sample

Variational autoencoders learn a single distribution in the latent space after encoding.
Here, a fully connected network is utilized and hence, there are multiple possibilities to
incorporate the variation. In practice, each conventional layer of a phase-functioned neu-
ral network (PFNN) [2] can be replaced with a variational layer. We configured network
models for all different positions (e.g. var1n3 starts with a variational layer, has a reg-
ular layer in between, and ends with a variational layer. For each pass, a single random
sample is used to draw from the latent distributions to enable a correspondence between
distributions. The dimensionality of the random sample is equal to the dimensionality of
the hidden layer.

3.3. Input and Output Format

The network performs a single regression step from the past to the future frame. The input
and output vectors are defined as a combination of control input and joint configurations.
The input vector contains trajectory positions pi ∈R

2 f , trajectory directions di ∈R
2 f and

gait controls gi ∈R
f×s of f = 12 surrounding frames and the s = 6 target gaits (standing,

walking, jogging, etc.). The past joint configuration is provided as joint positions li−1 ∈
R

3 j and joint velocities vi−1 ∈ R
3 j for all j = 31 joints.

The output vector contains global translation rx
i ∈ R

2, the change of forward direc-
tion ra

i ∈ R
2 projected on the ground plane, the phase delta (elapsed phase) Δi ∈ R. In

addition, it contains the predicted future trajectory positions pi+1 ∈ R
f and directions

di ∈ R
f . Last but not least the predicted next posture as joint positions li ∈ R

3 j and ve-
locities vi ∈ R

3 j for all j = 31 joints.

xi = {pi di gi li−1 vi−1} ∈ R
306

yi = {rx
i ra

i Δi pi+1 di+1 li vi} ∈ R
215

(5)
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3.4. Random Sampling during Motion Synthesis

A simple motion controller similar to [2, 26] was implemented. During motion synthe-
sis, the network is executed at 60 frames per second. Random sampling at such a high
frequency is problematic for two reasons: first, drawing a random sample at each frame
can produce jittering. Second, the more samples are drawn, the more will the average of
these samples converge towards the mean of the distribution thus reducing the variability.
Similar to Du et al. [20], a single step can be considered as motion primitive. Thus draw-
ing a new random sample at each step rather than at each frame and keeping this sam-
ple constant throughout the step should generate variational steps rather than variational
frames.

4. Evaluation

4.1. Dataset

All frames from the motion capture library published by Holden et al. [2] containing
only the locomotion on a flat surface were utilized. After pre-processing, the raw motion
capture data in the required format, 179,586 frame-pairs were extracted. The decision to
focus on the reduced dataset was taken, to reduce the variability introduced by external
factors, for example, the terrain.

4.2. Network Training

The network architecture was implemented using the TensorFlow framework [27]. Each
network was trained on the same dataset for 50 epochs using the stochastic gradient de-
scent algorithm Adam [28], already included in the framework.Dropout [29] was applied
with a retention probability of 0.7. All models were trained in mini-batches of size 32.
Cosine decay with warm restarts was utilized to adjust the learning rate over time. The
initial learning rate was set to 0.0001. The restarts were performed at 10 and 30 epochs.

4.3. Measuring Variation

An experimental setup was utilized to compare the variation in locomotion generation.
Using a vanilla PFNN, 10 seconds of straight forward walking were simulated to ini-
tialize a walk cycle. Based on this initialization all models generated 100 separate walk
cycles of 4 seconds or about 5 steps. We measure three variables for each of the walk
cycles. The inter-individual variation, comparing variation between the walk cycles
for each time-step. For the baseline-method (PFNN) this variation should be zero. The
intra-individual variation, describing variation throughout a single walk cycle. And
the error, measuring violations of smoothness, foot drifting and large inconsistencies
between steps (stumbling).

The inter-individual variation (Vinter) was computed by the sum

Vinter =Vinter pose +Vinter step (6)
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The inter-pose variation (Vinter pose) was measured as the median deviation of local joint
positions of the mean joint configuration for each time step. The inter step velocity
(Vinter step) was measured as the average standard deviation of step velocity of temporally
aligned steps generated by the different models. The sum of both variables was used to
measure the inter-individual variation.

The intra-individual variation (Vintra) was computed as the sum

Vintra =Vintra pose +Vintra step (7)

The intra-pose variation (Vintra pose) was measured by first, grouping all generated local
joint positions to their respective phase of the walk cycle (in 0.01 increments) and second
computing the average deviation of joint positions for each phase increment in the same
way, as the inter-pose variation. The intra step velocity (Vintra step) was measured as the
average deviation of step velocity of all steps generated from the specific motion model.

The error was measured as the sum

error = esmooth + edrift + edistance + eduration (8)

Smoothness (esmooth) was computed as the average of the 95-percentile of velocities gen-
erated by each model. Foot drifting (edrift) was computed for each generated walk cycle
and averaged. Step distance consistency (edistance) and step duration consistency (eduration)
are computed by taking the differences of distance and duration of consecutive steps. The
resulting standard deviation of the differences should be reasonably small. The variables
are computed by taking the standard deviation of all respective differences. Consistency
and smoothness should be reasonably small but not zero, as there would be no dynamic
movement in this case.

4.4. Numerical Results

We compare the VINN models against a vanilla PFNN implementation as well as random
models, where instead of sampling from a distribution random noise is added to the layers
of a PFNN, as this could generate variation as well. In addition, we compare sampling at
each frame and sampling at each step. In figure 2 we present the results as scatter plots
of variation measure versus the error. The baseline model produces zero inter-individual
variation and only minor intra-individual variation. All random models generate motion
with high error scores and do not necessarily generate more variation. Sampling at each
step rather than each frame can double the variation scores without a large increase of
error in the VINN models. The best performing model for inter- and intra-variation as
well as with an error comparably with the baseline model contains only variational layers
(var1n2n3).

4.5. Qualitative Results

The different models were used to generate locomotion in different scenarios. The ren-
dered videos of these scenarios can be found in the supplementary material.
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(a) Scatterplot of the inter-individual varia-
tion vs error for variational models
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(b) Scatterplot of the inter-individual varia-
tion vs error for random models
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(c) Scatterplot of the intra-individual varia-
tion versus error for variational models
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(d) Scatterplot of the intra-individual varia-
tion versus error for random models

Figure 2. Scatterplots of the variation versus error for inter- and intra-variation factors of all models. The
baseline and the best performing model are encircled. All random models generated inconsistent and noisy
motion.

frame 0 frame 27 frame 72

Figure 3. Development of motion variation within the first 72 frames (1.2 s). The display shows 5 overlayed
skeleton walkers fixed at their hip position from front and side view. The motion is generated using single-step
sampling with the vinn1n2n3 model.

Figure fig. 3 displays the result for the target model (vinn1n2n3). The qualitative analysis
supports the numerical evaluation. Adding random noise creates a high amount of jitter
when sampling at each frame. When sampling at each step, fewer variations in motion
but a lot of floating can be observed, where the global translation did not match the body
movements. In the case of VINN, the visible variation increases for all models, when
sampling at each step. The body movement is corresponding to the global translation
very accurately. Although there is a small numeric discontinuity at the specific frame of
the change of random sample, the discontinuity is barely visible in the animations.

5. Discussion

The evaluation results suggest, that the proposed generative network can capture and
replicate variation in motion best if a distribution is trained in each layer. In compari-
son to a vanilla PFNN, it generates a significant amount of variations. In comparison to
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adding random noise at each layer, it generates consistent motions with respect to foot
placement, step length, and smoothness.

We selected sufficiently straight walking examples from the training dataset and per-
formed the same evaluation on these training samples. As the data was captured in a re-
stricted space and not on a treadmill, there are only a few samples of straight-line walk-
ing. To find a sufficient amount of sequences for the evaluation, small deviations from
a straight line were accepted. The results show an error of 0.93 and an intra-individual
variation of 3.2. Although the variation is twice as large as generated by our model, it
shows a comparable error. For future data capturing of locomotion, we suggest to include
treadmill walking to have better means of evaluation, as the larger variation may be due
to different trajectories.

Due to the high frame-rate (60fps) the variation is regressing to the mean if a ran-
dom sample is drawn at each frame. Sampling at each step, however, creates natural mo-
tions with high variability. The discontinuity between two steps is comparably small and
can be further reduced by smoothing the random sample. However, future work should
investigate the usage of more temporally stable sampling methods.

The proposed approach demonstrates, that concepts of VAE can be integrated into
a fully-connected interpolating network structure while retaining the controllability and
visual quality of the original approach. This opens the potential for further experiments
with similar network structures ([3, 8]). In addition, it builds a basis for future work in
the direction of conditional variation and stylistic motion synthesis.
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A. Appendix

A.1. Definition of a Cubic Catmull-Rom Spline

Θ(p;θ) = αk1 +w(
1
2

αk2 −
1
2

αk0)+w2(αk0 −
5
2

αk1 +2αk2 −
1
2

αk3)

+w3(
3
2

αk1 −
3
2

αk2 +
1
2

αk3 −
1
2

αk0)

w =
4p
2π

mod 1

kn = (

⌊
4p
2π

⌋
+n−1) mod 4

(9)
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