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Abstract. Some anthropometric measurements, such as body weight often show a 
positively skewed distribution. Different types of transformations can be applied 
when handling skewed data in order to make the data more normally distributed. 
This paper presents and visualises how square root, log normal and, multiplicative 
inverse transformations can affect the data when creating boundary confidence 
ellipses. The paper also shows the difference of created manikin families, i.e. groups 
of manikin cases, when using transformed distributions or not, for three populations 
with different skewness. The results from the study show that transforming skewed 
distributions when generating confidence ellipses and boundary cases is appropriate 
to more accurately consider this type of diversity and correctly describe the shape 
of the actual skewed distribution. Transforming the data to create accurate boundary 
confidence regions is thought to be advantageous, as this would create digital 
manikins with enhanced accuracy that would produce more realistic and accurate 
simulations and evaluations when using DHM tools for the design of products and 
workplaces. 
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1. Introduction 

Digital human modelling (DHM) tools enable simulations and analyses of ergonomics 
in virtual environments. Functionality for consideration of anthropometric diversity and 
methods for ergonomics evaluations are central features when using DHM tools for 
product and production development to ensure that the design fits the intended proportion 
of the targeted population from a physical perspective. Working with anthropometric 
data, using mathematical and statistical treatment, it is possible to create boundary 
confidence regions in the form of ellipses or ellipsoids [1]. This is done under the 
assumption that the measurement distribution can be approximated with a normal 
distribution. However, body weight, width and circumference measurements as well as 
muscular strength often show a positively skewed distribution [2-3]. Comparing older 
data of a relatively fit population, e.g. ANSUR with military data from 1989 [4], to a 
more recent civilian population from 3D body scan studies, e.g. CAESAR data from 
2002 [5], and to an even more recent data with a bigger sample, e.g. NHANES from 2007 
[6], shows clear differences in skewness between both fitness level of different 
populations and the year when the data was measured [7]. Different types of 
transformations can be applied when handling skewed data in order to make the data 
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more normally distributed [8-9]. The transformed data could potentially be more 
representative when creating boundary confidence ellipsoids and selecting subsequent 
manikin cases, i.e. virtual human models with a number of key anthropometric 
dimensions defined. This paper visualises how square root, log normal and, 
multiplicative inverse transformations can affect the data when creating boundary 
confidence ellipses, i.e. make the shape of the created confidence ellipses more similar 
to and accurately describing the original data. The paper also shows the difference of 
created manikin families, i.e. groups of manikin cases, when using transformed 
distributions or not, for populations with different skewness.  

2. Method 

The applied methodology for consideration of skewness when defining boundary case 
manikins includes two parts:  

 the first part handles transformation of skewed data to make it more normally 
distributed as well as transforming the generated boundary case data back to 
real values for visualisation and input for subsequent DHM simulation 

 the second part handles the generation of boundary confidence region and 
definition of cases on that region 

2.1. Transformation of skewed data 

Skewness is a measure that describes the asymmetry of the distribution where a positive 
skew indicates that there is a number of persons that have values relatively far from the 
median value, thus forming a tail on the right side of the distribution. Skewness is here 
defined as 

� ∑ ������
��

���

	���
�������
�
, (1) 

where n is the sample size, µ the sample mean and σ the standard deviation. Different 
methods can be used to consider positively skewed anthropometric data, e.g. using body 
mass index (BMI) instead of body weight or using the positively skewed log normal 
distribution instead of the symmetrical normal distribution [7]. Another general method 
for transforming data, box-cox transformation [8], can also be used. In this study, three 
different methods for transforming body weight data, w, have been evaluated:  

 square-root  w½  (2) 
 log normal  ln(w)  (3) 
 reciprocal or multiplicative inverse  w-1 (4) 

 

The three transformation methods have in this study been applied only on original 
body weight data and not using BMI due to space limitations. After the transformed data 
have been used in statistical methods, e.g. for the generation of boundary confidence 
region and cases, the data can be transformed back into real values. The three methods 
are transformed back as: 

 square-root  (w½)2  (5) 
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 log normal  eln(w)  (6) 
 reciprocal or multiplicative inverse  (w-1)-1 (7) 

2.2. Generation of boundary region and definition of cases 

The transformed data is used, together with stature data, to form boundary regions in the 
shape of two-dimensional confidence ellipses, and then boundary cases manikins are 
defined on edges of these ellipses [1]. The mathematical process for calculating boundary 
case data based on the correlation matrix is described in Table 1. 

Table 1. Mathematical process for calculating boundary case data based on the correlation matrix. 

Description: Mathematical definition:

1. Correlation matrix �1 �� 1
� 
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7. Boundary cases in standardised space �� = �(��)�

8. Boundary cases in real or transformed space � = ����� × �� + ��,���� × �� + ��� 
 
To give each distribution the same significance in the calculations the data is, in addition 
to the previous transformation due to skewness, transformed into standard normal 
distributions in which the mean values are 0 and standard deviation are 1 [10]. The two-
dimensional confidence ellipses are defined by the length and direction of the axes, 
which are given by the eigenvalues and eigenvectors of the correlation matrix. In a two-
dimensional standard normal distribution the eigenvalues and eigenvectors are relatively 
easy to calculate (Table 1). To get the final length of the ellipses axes the square root of 
the eigenvalues are multiplied with the scale factor k. The scale factor k is calculated 
from the chi-squared distribution, in this case with two degrees of freedom since we have 
two dimensions and with a sought accommodation level of 95 %, i.e. the confidence  
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ellipses are supposed to cover 95 % of the data points. The boundary cases are calculated 
by using an experimental design matrix that defines four axis cases on the edges of the 
two axes of the ellipses and four box cases at the corners of a rectangle that spans the 
biggest area inside the ellipses [11]. The boundary cases are then calculated by 
multiplying the eigenvector matrix with the transpose of the experimental design plan 
multiplied with the matrix of scaled axes. The values for the boundary cases are in the 
end transformed back from standard normal distribution to the real space or transformed 
space due to skewness.  

3. Results 

The suggested method was applied on three different populations: 1. ANSUR with 
military data from 1989 [4], 2. CAESAR with civilian data from 2002 [5], and 3. 
NHANES with more recent data and a bigger sample from 2011-2014 [12]. The study 
was, due to space limitations, limited to female data but the three population show a 
range of skewness and correlation for stature and body weight (Table 2).  

Table 2. Skewness and correlation of stature and body weight for three different populations [4,5,12]. 

 Skewness Correlation between stature 

and body weight Data source Stature Body weight 

ANSUR [4] 0.139 0.536 0.529 

CAESAR [5] 0.129 1.748 0.296 

NHANES [12] 0.020 1.230 0.329 

 
The different transformation methods affect both the skewness and the correlation 

to stature (Table 3). This can also be visualised using quantile-quantile plots (Q-Q plot) 
(Figure 1-3). The resulting boundary ellipses with eight boundary cases for each 
transformation as well as the original weight data are visualised in Figure 4-6 and the 
corresponding measurement and percentile values are presented in Table 4-6. 

Table 3. Skewness and correlation to stature for the three transformation methods. 

 Skewness Correlation to stature 

Data source 
Square-root, 

w½ 

Log normal, 

ln(w) 
Reciprocal, 

w-1 

Square-root, 
w½ 

Log normal, 

ln(w) 
Reciprocal, 

w-1 

ANSUR [4] 0.325 0.119 0.287 0.531 0.533 -0.533 

CAESAR [5] 1.285 0.882 -0.203 0.314 0.331 -0.359 

NHANES [12] 0.759 0.352 0.388 0.339 0.347 -0.354 
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Figure 1. Q-Q plot of the positively skewed distribution of body weight as well as the three transformation 

methods, data from ANSUR [4]. 

 

Figure 2. Q-Q plot of the positively skewed distribution of body weight as well as the three transformation 

methods, data from CAESAR [5]. 
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Figure 3. Q-Q plot of the positively skewed distribution of body weight as well as the three transformation 

methods, data from NHANES [12]. 

 

Figure 4. Confidence ellipses and boundary cases for the original body weight data and for the three 

transformation methods caption, data from ANSUR [4]. Stature (mm) on x-axis and weight (kg) on y-axis. 
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Figure 5. Confidence ellipses and boundary cases for the original body weight data and for the three 

transformation methods caption, data from CAESAR [5]. Stature (mm) on x-axis and weight (kg) on y-axis. 

 

Figure 6. Confidence ellipses and boundary cases for the original body weight data and for the three 

transformation methods caption, data from NHANES [12]. Stature (mm) on x-axis and weight (kg) on y-axis. 
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Table 4. Boundary cases for each transformation as well as the original weight data and the corresponding 

measurement and percentile values, data from ANSUR [4]. 

ANSUR 
Stature 

[mm,%-ile] 

Body weight 

(w) 

[kg,%-ile] 

Square-root 

w½ 

[kg,%-ile] 

Log normal 

ln(w) 

[kg,%-ile] 

Reciprocal 

w-1 

[kg,%-ile] 

Case 1 1493 (1.6) 44 (0.6) 45 (0.9) 46 (1.4) 47 (2.6) 

Case 2 1766 (98.1) 80 (97.1) 81 (97.5) 82 (97.9) 85 (99.1) 

Case 3 1705 (87.6) 52 (10.5) 52 (11.1) 53 (11.9) 53 (12.2) 

Case 4 1554 (11.1) 72 (88.0) 72 (88.0) 72 (88.0) 72 (88.7) 

Case 5 1586 (25.7) 42 (0.2) 44 (0.5) 45 (0.8) 46 (1.5) 

Case 6 1779 (98.9) 68 (77.3) 67 (76.5) 67 (75.9) 67 (74.9) 

Case 7 1480 (0.7) 56 (26.0) 56 (25.5) 56 (25.1) 56 (24.2) 

Case 8 1672 (75.0) 82 (97.9) 83 (98.3) 84 (98.9) 89 (99.5) 

 

Table 5. Boundary cases for each transformation as well as the original weight data and the corresponding 

measurement and percentile values, data from CAESAR [5]. 

CAESAR 
Stature 

[mm,%-ile] 

Body weight 

(w) 

[kg,%-ile] 

Square-root 

w½ 

[kg,%-ile] 

Log normal 

ln(w) 

[kg,%-ile] 

Reciprocal 

w-1 

[kg,%-ile] 

Case 1 1497 (1.3) 35 (0.0) 40 (0.1) 43 (0.3) 46 (1.9) 

Case 2 1784 (97.2) 102 (95.0) 103 (95.0) 104 (95.3) 111 (96.9) 

Case 3 1744 (91.7) 44 (0.4) 47 (2.3) 49 (4.1) 51 (6.9) 

Case 4 1537 (6.5) 93 (92.0) 92 (91.2) 91 (90.5) 91 (90.5) 

Case 5 1612 (36.6) 27 (0.0) 35 (0.0) 39 (0.0) 44 (0.3) 

Case 6 1815 (98.5) 75 (74.5) 74 (73.6) 73 (71.8) 72 (69.0) 

Case 7 1466 (0.5) 62 (42.1) 62 (39.8) 61 (38.0) 60 (34.2) 

Case 8 1668 (67.7) 110 (96.5) 111 (96.9) 114 (97.2) 128 (99.0) 

 

Table 6. Boundary cases for each transformation as well as the original weight data and the corresponding 

measurement and percentile values, data from NHANES [12]. 

NHANES 
Stature 

[mm,%-ile] 

Body weight 

(w) 

[kg,%-ile] 

Square-root 

w½ 

[kg,%-ile] 

Log normal 

ln(w) 

[kg,%-ile] 

Reciprocal 

w-1 

[kg,%-ile] 

Case 1 1459 (2.3) 34 (0.0) 40 (0.3) 43 (1.0) 47 (2.8) 

Case 2 1750 (97.6) 119 (95.7) 121 (96.3) 124 (96.9) 146 (99.1) 

Case 3 1707 (92.4) 46 (2.2) 49 (4.9) 51 (7.1) 52 (9.2) 

Case 4 1502 (8.3) 106 (91.0) 106 (90.7) 106 (90.9) 110 (92.9) 

Case 5 1574 (33.6) 25 (0.0) 34 (0.1) 39 (0.2) 44 (1.4) 

Case 6 1780 (99.1) 85 (71.8) 83 (70.1) 82 (68.6) 80 (65.1) 

Case 7 1429 (0.6) 67 (39.7) 66 (37.7) 66 (35.7) 64 (31.9) 

Case 8 1635 (66.3) 128 (97.4) 131 (97.9) 138 (98.7) 184 (99.8) 
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4. Discussion 

The results from the study show that transforming skewed distributions when generating 

confidence ellipses and boundary cases is possible, suitable and often even necessary to 

more accurately consider this type of diversity. The shape of the created confidence 

ellipses are more similar to and accurately describes the original skewed data for the 

CAESAR and NHANES female population. For the ANSUR female population, which 
have a less skewed weight distribution, transforming the data does not affect the shape 

of the ellipses to any great extent. But the tested transformation methods does not either 

create any subsequent issues or inaccuracies when generating confidence ellipses. 

When looking at the measurement and percentile values of the generated cases it is 

evident that not transforming the data of a skewed weight distribution will generate cases 
that are relatively far outside or far inside the actual distribution. Case 5 for both 

CAESAR and NHANES when not transforming the data have an extremely low weight 

of 25 and 27, respectively. Not transforming the data will also lead to an underestimation 

of the higher percentile values. Case 8 for all three populations have the highest weight 

values but at the same time relatively low values when not transforming the data. When 

transforming the data, the values increases from square-root to log normal and from log 
normal to multiplicative inverse. For the NHANES data the multiplicative inverse 

transformation method leads to a boundary case with a weight of 184 kg which can seem 

extremely high, however that case can still be found within the actual distribution. Future 

research will also include BMI and other non-normal distributed anthropometric 

variables as well testing additional transformation methods. To have accurate boundary 

confidence regions is thought to be advantageous, whether the manikin cases are selected 
as boundary cases located towards the edges or as distributed cases spread throughout a 

region, randomly or by some systematic approach. This would give digital human models 

with anthropometry that better resembles the variance and diversity that exist within 

human populations. This would in turn produce more realistic and accurate simulations 

and evaluations and thus give better assistance to engineers and designers using DHM 

tools when developing products and workplaces. 
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