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Abstract. Effective integration of humans and automation in control systems 
engineering has been an ongoing effort since the original publication of McRuer’s 
descriptions of human operators in servomechanism systems in 1959. Over the 
past 60 years, increasing capabilities of automation and computer systems have 
resulted in changing considerations of function allocation and human-automation 
interaction since Fitts’ “Humans are better at / Machines are better at” descriptions 
of the early 1950s. The processes of distributed autonomy and dynamic function 
allocation in modern human-automation and human-robotic interactions benefit 
from increased computing capabilities, resulting in systems with potentially fluid 
(and sometimes conflicting) boundaries for human vs. automation control. Using 
examples from human and robotic spaceflight, robotics can demonstrate 
significant autonomy (automated “safe-moding” and restart by Mars rovers), and 
humans may have limited autonomy (when astronauts conducting extravehicular 
activity rely on and wait for ground controllers to create or modify procedures to 
complete required tasks). Proposed future advances in human-automation 
interaction and coordination include the development of “centaur” teams of 
humans interacting with sophisticated software and robotic agents as team 
members (rather than fixed allocations as human-controlled servos or automation-
controlled autonomous systems). Approaches within the authors’ lab include 
qualitative research of process and cognitive task demands to create functional 
architecture for AI applications in cyber security. Another method uses agent-
based modeling to incorporate individual thinking style and interpersonal 
interactions in task performance simulations, effectively creating more robust 
hybrid systems incorporating cognitive and social factors in complex settings. 

Keywords. Autonomy, Centaur Hybrid Computing, Distributed Expertise, 
Expertise Dimensions, Human Supervisory Control, Situation Awareness. 

Introduction 

Effective integration of humans and automation in control systems engineering has 
been an ongoing effort since the original publication of McRuer’s descriptions of 
human operators in servomechanism systems in 1959 [1]. Over the past 60 years, 
increasing capabilities of automation and computer systems have resulted in changing 
considerations of function allocation and human-automation interaction since Fitts’ 
“Humans are better at / Machines are better at” descriptions of the early 1950s [2]. The 
processes of distributed autonomy and dynamic function allocation in modern human-
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automation and human-robotic interactions benefit from increased computing 
capabilities, resulting in systems with potentially fluid (and sometimes conflicting) 
boundaries for human vs. automation control. 

These advances have created, in many ways, a more complex and challenging set 
of problems in human-automation interactions and complex systems design and 
integration. Compared to science-fiction dreams of fully automated cities and robotic 
assistants supporting any and all phases of human endeavor, our automation, artificial 
intelligence and robotics (A2IR) environment at the end of the second decade of the 
21st Century is decidedly deficient. In areas ranging from aviation to cybersecurity to 
healthcare, A2IR systems and software is neither ready nor capable of functioning 
effectively or independently in all situations; even more troubling is the struggle 
between the A2IR agents and humans who still control or manage the systems in which 
these agents are also components. 

Further, hidden within the science-fiction fantasies of robust, successful, and 
resilient A2IR is a problem engineers recognize in all damped feedback response 
systems. No engineering system (or sociotechnical system) responds instantaneously or 
perfectly to any state change input signal. Depending on the system, hysteresis, 
damping, lag, and other limitations all influence the ability of the engineering system to 
effectively track and efficiently respond to the required state change [3]. Unfortunately, 
real-world experiences as well as sociotechnical management simulations have 
demonstrated that human decision-makers’ incorporation of system dynamics 
constraints in managing complex systems is brittle and subject to a number of cognitive 
limitations [4], [5] that can be assisted by “preview displays” or other software tools. 

As a result of these conflicting pressures, an effective short term solution to the 
transition to improved A2IR technologies seems to be found not in the selection (or 
worse yet, competition) between human and automation control of complex systems, 
but improved system design to enable joint human-automation cooperation and system 
management. However, improved information flow and shared understanding of intent 
and function allocation between humans and A2IR technologies requires additional 
design emphasis on clear and mutually interpretable communication, in essence 
extending the concepts of shared mental models or shared situation awareness [6], [7] 
to human-automation partnering. 

1. Discussion 

1.1. Information to improve awareness and performance 

The integration of information and shared understanding between human and A2IR 
technologies draws on a variety of disciplines, including cybernetics and information 
theory as well as human factors engineering.  While the origins of information theory 
as the reduction of entropy associated with message uncertainty have certainly 
generated tremendous advances in communications engineering and computer science, 
this aspect of accurate information flow as a technical problem was only one of three 
linked questions about enabling effective communication; the other questions were 
semantic and effectiveness problems [8].  According to Shannon and Weaver [8], “the 
effectiveness problems are concerned with the success with which the meaning 
conveyed to the receiver leads to the desired conduct on his part” [8, p. 5, emphasis in 
original]. The mathematical theory of communication, as conceived by Shannon and 
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based on Wiener’s advances in cybernetics [9], was considered to be a rigorous 
approach to the technical problem, but only a partial contribution to the effectiveness 
problem.  In essence, then, the discussion of effective human-machine information 
flow and sharing is an explicit consideration of the effectiveness problem in both 
directions—not only that the automation as receiver enacts the desired conduct of the 
human, but that the human as receiver understands and responds appropriately to the 
meaning conveyed to the human by the automation. 

A second, and more recent, tripartite discussion of information processing and 
sensemaking at the human level is generally known as “situation awareness,” a term 
originally coined by pilots and most frequently associated with task performance and 
human-machine interactions in the aviation domain [10]. The three levels of situation 
awareness include: perception of relevant elements of the environment; sensory 
processing and cognitive comprehension of those elements; and projection of the 
impact of those elements into the future, with implications for task performance. 
Importantly, the determination of relevant and meaningful environmental elements is 
highly domain- and goal-dependent.  Echoing the Shannon and Weaver arguments 
decades earlier, the technical problem of enabling presentation and perception of data 
from the environment is only a piece of the broader effectiveness problem of 
comprehension and projection of those data within the context of effective task 
performance. 

These problems are magnified in distributed team performance contexts, where the 
relevant environmental data and conditions available to one member of a complex 
systems operations team are not also available in real time to other members of the 
team.  This lack of availability may be due to overall task complexity, differences in 
operational demands and expertise, large numbers of technical interfaces all requiring 
distinct skills and attention, or distance and time delays preventing shared synchronous 
presentation and understanding [11].  The construct of distributed supervisory 
coordination and distributed expertise emphasizes the effective sharing of expertise and 
task-related information among team members.  Importantly, though the original 
considerations of distributed supervisory coordination described by Caldwell [11] do 
emphasize teams of humans, there is no explicit exclusion of sufficiently robust and 
capable A2IR systems to be able to also function as team members as automation and 
software agent technologies evolve. 

1.2. Where is the field going? 

Some recent work advancing the frontier of human-automation teaming has begun to 
consider mutual requirements for information flow between expert humans and 
advanced software agents.  Examples of these human-automation team configurations 
are described as “centaurs,” highlighting the hybrid nature of human expertise 
collaborating with artificial intelligence computer science design of semi-autonomous 
agents. 

Beginning with examples in deep learning applied to chess, centaur computing 
teams have developed in a number of areas, ranging from A2IR-supported soldiers to 
“centaur care teams” for cancer care and other healthcare settings [12], [13].  As 
described in the discussion on situation awareness, the specific contextual and 
environmental elements of each application domain will require distinct analysis of 
both explicit domain knowledge and additional dimensions of human expertise for 
experts in that task setting [14], and the requirements of learning algorithms and 
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training / test set determinations for supporting software agents.  There is an additional 
requirement of effective coordination in time-critical settings, where effective 
communication and coordination is not simply supporting a general decision problem, 
but also has task deadlines and temporal requirements that also determine success and 
failure criteria for performance.  As a result, effective centaur teams must not only 
consider effective allocation of functions and decisions between the human experts and 
software agents, but how these allocations can be managed dynamically to improve 
performance within task and time constraints for performance.[3]–[5], [15]. The 
following sections describe examples of initial analysis approaches and requirements 
definitions for creating centaur teams in two areas of human-A2IR interactions. 

2. Human-automation interaction and dynamic function allocation 

As technology advances, so to do opportunities to design human-automation interaction 
in complex environments. However, these require careful consideration in multiple 
dimensions of work, including cognitive processes, team process behaviors, and effects 
of task stressors [16]. Research in the authors’ lab has sought to address some of these 
factors across different methods and task environments, described below.  While the 
lab’s efforts span multiple project application areas and complex systems 
implementations, the work is united under a common theme: studying how people get, 
share, and use information… well.  In the context of human interactions with A2IR, the 
challenge is increased because at least one of the partners sharing information must be 
explicitly designed and built to provide information in compatible ways, even though 
our understanding of how humans effectively coordinate implicit and informal 
information is still limited.  In addition, assumptions about normative forms of 
communication should not be considered universally superior, given combinations of 
situational, technological, and even neurodiversity considerations of how and what 
information can be effectively shared [17]–[19].  

2.1. Dimensions of Expertise for Coordinated Function Allocation 

The original configuration of Fitts’ List allocations of functions between humans and 
machines uses a limited conceptualization of expertise to consider relative strengths of 
humans and automation technologies, focusing primarily on sensorimotor performance 
and domain-based cognitive and strategic capability [2].  By contrast, group dynamics 
researchers as early as the 1950s through the 1970s specifically emphasized 
coordinated teamwork as an integration of task-based skills and socioemotional, or 
interpersonal, performance [18].  In order to demonstrate effective task-related and 
cohesive group behaviors, expert team members were expected to appropriately 
balance multiple interactive skills; these skills have been since developed into four 
software simulation module classes to demonstrate team interaction processes (See 
Table 1) [18]. 
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Table 1. Descriptions of Expert Team Coordination Processes, from [18]. 

Expertise Coordination 
Process  

Descriptions of Coordination Processes 

Asking Novices (or team members acting outside of their area of expertise) bring 
queries to the team; queries are then available to be answered by one or 
more experts, depending on complexity, comprehensibility, expert 
availability, and query understanding 

Learning Team members are socialized as part of an expert team, and use existing 
experts and reference sources to develop expertise in a particular area 
while learning about the structure and processes of the team 

Sharing A mixed group of novices and experts interact using shared information 
tools (such as a discussion list or chat room) to exchange information, 
perspectives, and social affiliation, in addition to specific task oriented 
discussions 

Solving Members of the expert team are responsible for monitoring and 
troubleshooting problems and are focused on effective task performance to 
maintain system functioning 

 
These configurations, as well as other research describing dimensions of expertise, 

emphasize the importance of effective team coordination as incorporating both 
individual skills (beyond one’s specific domains of declarative knowledge) and 
interpersonal skills.  The exploration of dimensions of expertise [14] lays out these 
individual / interpersonal complementary skills, as well as task / team complementary 
skills, as a visual display of multiple combinations of expertise types (See Figure 1). 

 
Figure 1. Six Dimensions Of Expertise Integrating Individual (Triangle Point Up) And Interpersonal 

(Triangle Point Down) Expertise Coordination Requirements. Adapted from [14]. 
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Additional indications of the need for expanding these interpersonal expertise 
coordination dimensions among humans are shown in the following emerging domains 
of human-robotic cooperation. 

2.2. Human-robotic cooperation for human spaceflight exploration 

Robotic scientific operations have occurred on Mars since the 1970s; first with landers 
and then with rovers in 1997. The National Aeronautics and Space Administration has 
successfully landed and operated four different rovers on Mars: Sojourner, Spirit and 
Opportunity (the twin Mars Exploration Rovers), and Curiosity (the Mars Science 
Laboratory) [20]–[22]. Due to the facts that rovers are mobile, there is a 4-22 minute 
one-way light time delay on all communications between Earth and Mars, and that 
there are only a few downlink and uplink opportunities each day with which to 
communicate with robotic assets on Mars [21], rovers have certain levels of autonomy 
when it comes to the performance of some activities (and very little autonomy with 
others). For example, rovers are not “driven” on the Martian surface like a remote-
controlled vehicle—the time delay on commands makes such a mobility model 
impossible. Instead, Rover Drivers give waypoints and end state commands to the 
rover and then the rover uses stereo images and other wayfaring technologies to avoid 
obstacles to reach the desired destination [20], [23]. Contrarily, when it comes to 
scientific activities, a Mars rover has a low level of autonomy; a large group of 
scientists on Earth choose scientifically interesting targets and the associated tasks for 
the rover, and rover engineers ensure that those science activities can be feasibly 
performed while maintaining the safety of the rover [24]. 

Currently, there are plans in the space exploration community to send humans to 
Mars [25], [26]. In order to support human life on Mars, astronauts will need to 
perform many extravehicular activities (EVAs)—where a suited astronaut leaves the 
safety of the spacecraft—due to the operational flexibility that EVA provides [27] and 
despite the fact that EVA poses higher risk to astronauts than nearly any other activity 
in space [28].  Currently, EVAs are performed with small crews being supported by a 
large group of experts on Earth in the Mission Control Center. The personnel in 
Mission Control are responsible for processing and monitoring the majority of the 
necessary information streams and keeping the astronauts safe during EVA [29], [30]. 
There is evidence that this current model of EVA is incompatible with the time-delayed 
communication constraints and the communication blackout periods that come with 
human deep-space missions [31], and is also not scalable to situations where they may 
be more than one EVA being performed simultaneously [15].  

Current deep-space human mission architectures plan for small crew sizes of 3-6 
astronauts [32], [33], meaning that sending larger crews on deep-space missions to 
compensate for the lack of Earth-based support is not being considered. Due to this, the 
complex systems required to keep humans alive in deep-space will quickly overwhelm 
unaided crews [31]; the first and third author of this paper have observed the over-
abundance of information monitoring and processing requirements for small crew in a 
Mars analog setting, which supports this assertion [34].  Therefore, taking advantage of 
increases in computational capabilities in the decades since the beginning of space 
exploration, the development of automated support systems to monitor and process 
critical information and aid in decision-making will be necessary. With the goal in 
aiding automation development, both [35] and [36] characterized the EVA work 
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domain using the principles of Cognitive Work Analysis [37] in order to develop an 
automated path-planning tool and a decision support system framework, respectively.   

The third author of this paper is looking to identify the information 
monitoring/processing requirements for the performance of scientific EVA on Mars. 
The goals of this work are to be able to identify the necessary information streams, how 
the information is collected and delivered to the astronauts, and the necessary actions 
that need to be taken with the specified information. This is being done through 
qualitative interviews with rover scientists and engineers in order to be able to take the 
knowledge gained through experience with robotic exploration and apply it to human 
exploration. Once there is a clearer picture regarding the necessary information streams 
for scientific EVA, automated support systems can be developed, ensuring that all 
developed tools not only perform their roles acceptably, but that each individual tool 
functions well with other automated support systems, and the astronauts they are 
designed to support. Dynamic function allocation will be important in this application, 
as it will be of the utmost importance to ensure that the astronauts are kept in-the-loop 
as to the current actions of the automation and can take over the functions of the robotic 
aid if necessary. 

2.3. Human-automation team design using simulation 

Another approach in the authors’ lab explores the idea of teams of humans and 
automation working together through simulation research. The goal of this research 
thrust is to establish better understanding of relationships between social and cognitive 
factors, and how these affect performance in different configurations of teams 
(including human and non-human entities). Onken [38] created a foundation for 
building these computational models. His doctoral work incorporated team member 
attributes in task performance for NASA mission control settings. This work explored 
event response, and advanced towards understand needed expertise and attributes to 
improve performance. Master’s thesis research by the second author expanded upon 
Onken’s work to build further understanding of attribute dynamics in task performance 
using agent-based modeling (ABM) [39]. 

Simulation methods employing advanced computing capabilities are able 
overcome time and resource boundaries in the real-world [40]. Moreover, these 
methods can accommodate experimental research in human-automation teaming by 
creating virtual teams from real team data and testing different attribute levels and 
combinations in a simulated environment. Though only a prototype of how ABM 
simulation methods can explore this area, the research paves a path to studying 
complex sociotechnical systems through computational approaches, more specifically 
in how components of a team (human-human, human-robot, or robot-robot) work 
together to complete a task [41]. This type of research also allows for experimentation 
in dynamic function allocation and how it affects overall performance.  

The flexibility and power afforded by modern-day computing capabilities allow 
for faster exploration of the domain and clearer identification of emergent patterns and 
factor interactions. With respect to dynamic function allocation, this research illustrates 
how computing opens a new avenue for understanding and designing human-
automation teams, and identifying needs for balancing member attributes in a variety of 
task settings. 
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2.4. Cyber security centaurs 

Cyber security is a rapidly evolving domain in which technology is advancing to meet 
demands of defenders. More specifically computer security incident response involves 
humans and automation ingesting large amounts of data, detecting threats, and taking 
action to mitigate them, all in a matter of seconds. The field is fast arriving to the 
conclusion that, in order to adequately defend a given network, automation in more 
advanced forms (i.e. machine learning and artificial intelligence) is a necessary 
component of incident response. ‘Cyber security centaurs’ have been proposed in 
business literature as the next step for the field [42], and newly-released automation 
and orchestration platforms are integrating human expertise into data analysis and 
process execution [43]. These ideas pivot on the concept the humans and technology 
will become teammates, working together to detect and mitigate cyber threats. Yet, as 
this technology advances in machine learning capability and computing speed, the 
future role and strategic development of the human component remains undefined. 

The authors posit that dynamic function allocation will soon become a topic of 
interest as artificial intelligence grows in both proficiency and popularity in cyber 
security. Current automation remains at the lower tiers of incident response, with 
supervised learning and some monitored task execution. Considering the pain felt in 
many computer security organizations is not enough skilled workers [44], automation 
is seen as the solution to one of the biggest problems currently experienced in the field. 
However, the next stages of development and integration of automation into higher-
skill tasks depends on better understanding of human-automation interaction in this 
fast-moving, decision-sensitive domain. 

Specialized technology design is often preceded by achieving better understanding 
of how the tasks are currently performed, and what requirements are needed in order to 
perform them well [3], [45], [46]. Cyber security analyst jobs are considered 
knowledge work [47], indicating that expertise is central to performing the job well. 
Dissertation work by the first author explores dimensions of expertise [14] beyond 
merely subject matter in the context of computer security incident response to better 
define technology requirements in relation to the tasks currently performed. Methods 
are based in qualitative research to accurately collect information on the analysts and 
tasks directly in the environments in which they work. Studying teams in different 
sectors with varying levels of technology to assist analysts also gives ranges of 
maturity and needs to widen the scope of potential customizations or automation 
settings. An additional study elicits knowledge from cyber security experts to better 
understand holistic expertise needs for lower tier tasks and transitions (or escalations) 
between novices and experts. Finally, comparing the findings of both methods to 
current development in automation will help draw attention to future areas of 
investigation when translating expertise from humans to machines, and striking a 
balance between the two for human-machine teaming. 

3. Conclusions 

The changing landscape of automation and machine learning technologies suggests that 
the Fitts list of human-machine function allocation from the 1950s is no longer accurate, 
but fundamentally insufficient, for examining new challenges of human-automation 
interactions and dynamic function allocation for complex task scenarios.  Thus, a full 
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re-presentation of the Fitts list is beyond the scope of this paper, both in terms of 
current automation capabilities and the limitation of FItts’ considerations of 
sensorimotor and cognitive expertise. Centaur teams in space and on Earth will, for the 
foreseeable future, require coordination and mutual support integrating humans and 
machines in the face of dynamic challenges, rather than fixed allocations that pit those 
resources against each other.  

 
However, it is possible to consider domains of needed improvements in human-

automation teaming based on the six dimensions of expertise framework presented in 
Figure 1 above.  Again, a full exploration of machine learning and social “chatbot” 
interactions is beyond the scope of this paper, and is itself a daunting challenge to 
address in the face of a rapidly advancing technology frontier (see [48-49] for popular 
press descriptions as of summer 2019).  It is not envisioned that machine learning and 
automation capabilities currently demonstrated fully embodies any of the six 
dimensions of expertise presented in [14], let alone a single functional integration 
effectively working with humans in a specific centaur application, as of 2019.  
However, a simple overview of needed capabilities is presented, based on the authors’ 
initial considerations (rather than an exhaustive literature review), in Table 2.  
Extensions from general social media or popular “chatbot” human-computer 
interactions are problematic, since the interaction goals of Alexa, Siri or similar tools 
are different from a true human-agent centaur task performance teammate.  (Ironically, 
it is reported that Alexa’s responses to queries about machine learning include “But I 
don’t know a lot about it, to be honest.” [48]). 

Table 2. Simple overview of needed capabilities. 

Expertise Dimension 
(from [14])  

Current Machine Learning Capabilities and Limitations (Authors’ 
Opinion Only) 

Subject Matter Domain IBM Watson has demonstrated champion-level general topic knowledge in 
the gameshow “Jeopardy”; however, social media chatbots still focus on 
popular topics rather than integrative subject matter. 

Interface Tools Increasing expertise in terms of accessing recognized multimedia, 
documents, or general knowledge interfaces.  Interactions with real-world 
objects in unconstrained and human-risky environments, such as 
roadworthy vehicles and automated guided robots in factories, are still of 
limited autonomy and capability as of mid-2019. 

Situation Context Pre-identified contexts are largely recognized through pattern recognition 
and guided training sets.  Machine learning tools still have significant 
problems with acknowledging and combatting biases and misinterpretations 
based on training set contexts. 

Expert Identification Machine learning tools can identify explicitly defined roles and primary 
expertise designations of human team members; experience-based 
recognition of implicit capabilities or past knowledge is limited to 
aggregated training of agent experience with those team members. 

Information Flow Path 
Support 

Dynamic monitoring and “quality of service” enhancement within a specific 
medium has improved greatly in audio, video, and word recognition for text 
messaging.  shifting of communication across flow paths (communication 
channels or media) very limited. 

Communication 
Effectiveness 

Weak in terms of dynamic, Turing-style conversation management, but 
human-aided “bots” have demonstrated capabilities in misinformation and 
social influence campaigns.  Collaborative problem solving and sharing 
(see [18]) on dynamic tasks varies greatly by problem domain. 
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In closing, work from the authors’ lab seeks to apply multi-dimensional and multi-

disciplinary frameworks to achieve better understanding of human needs and to 
translate these into system requirements for automation design and dynamic function 
allocation.  The design of human-automation centaurs represents a distinct, yet 
challenging, approach both to enhancing A2IR capabilities and retaining the benefits of 
human expertise.  In contexts ranging from cybersecurity to spaceflight to healthcare, 
transportation, and other domains, cooperative integration rather than antagonistic 
conflict provides an important enabling capability for the extended transitions from 
fully manual to fully automatic management of complex sociotechnical systems. 
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