
A Novel Technique for Handling Small File

Problem of HDFS: Hash Based Archive

File (HBAF)

Vijay Shankar Sharmaa , 1, and N.C Barwar

b
a

 Research Scholar, Dept. of CSE, M.B.M Engineering College, Jodhpur, India
b

 Professor & Head, Dept. of CSE, M.B.M Engineering College, Jodhpur, India

Abstract. Now a day’s, Data is exponentially increasing with the advancement in
the data science. Each and every digital footprint is generating enormous amount
of data, which is further used for processing various tasks to generate important
information for different end user applications. To handle such enormous amount
of data, there are number of technologies available, Hadoop/HDFS is one of the
big data handling technology. HDFS can easily handle the large files but when
there is the case to deal with massive number of small files, the performance of the
HDFS degrades. In this paper we have proposed a novel technique Hash Based
Archive File (HBAF) that can solve the small file problem of the HDFS. The
proposed technique is capable to read the final index files partly, that will reduce
the memory load on the Name Node and offer the file appending capability after
creation of the archiv.

Keywords. HDFS, Small File Problem, Meta Data Management, Hash Function,
HAR, Map File, SSHF, HT-MMPHF, Merging Technique.

1. Introduction

Hadoop is open-source technology to handle the vast amount of unstructured and big
data, which offers the wide range functionality in comparison to the traditional
relational data bases. The file system of Hadoop is known as the Hadoop Distributed
File System (HDFS) that is based on the master slave architecture. In this architecture
there is a Name Node that acts as a master with processing capabilities and stores the
meta-data information of the files stored in the file system. There are number of Data
Node’s that act as the slave means these Data Node’s are only used to store the data, no
processing is required at the Data Node’s. Once a file is stored on the HDFS it is
divided in the 128 MB size blocks and then these blocks are stored on the HDFS. The
size of the HDFS block is variable means client can configure the size of the HDFS
block as per the requirement, by default it is 128 MB. To ensure the availability of the
data, HDFS replicate the data blocks on the Data Node’s and it will be decided by the
replication factor that is by default 3, means each data block is written on the three
Data Node’s, in case if any one of the Data_Node’s gets down then data block can be

1 Vijay Shankar Sharma, Research Scholar, Dept. of CSE, M.B.M Engineering College, India
Email:vijay.mbmit09@gmail.com.

Recent Trends in Intensive Computing
M. Rajesh et al. (Eds.)

© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC210205

272

recovered from the other Data Node’s that is available as a replica. Handling of large
files in HDFS is done efficiently as it is designed according to the application of the
large files. There are number of major platforms which generate the small files i.e.,
Facebook, Twitter, Instagram, LinkedIn, Amazon, Flip cart, snap deal etc. This list of
platforms is very long therefore it is easy to understand small files generation platforms
by the application areas i.e., social networking sites, e-commerce websites, educational
websites, research and analysis websites, weather forecast websites, entertainment
websites, log files generated by the severs, health care data etc. a file is termed as the
small file, if it is less than the size of the default HDFS block size. The application area
of the small files is very vast therefore the importance of small files in analytics and in
technology is very crucial and important. Unfortunately, majority of the distributed file
systems are not designed to deal with the problem of massive small files. Massive
small files generate the large amount of the meta-data at the central node in the
distributed system that will degrade the overall performance of the distributed file
system. Unfortunately, HDFS is also not capable to deal with the massive number of
small files; Name Node in the HDFS will be overloaded due to excessive meta-data
generation while dealing with the massive number of the small files.

In this paper we have proposed a novel technique to handle small file problem of

the HDFS called as “Hash Based Index File (HBAF Archive)”. The major contribution
of our technique is that one can directly access the small files meta-data without use of
any caching mechanism. Now, there is no need to read the index file entirely in the
memory, only required part of the index file will be read and loaded to the memory. To
read the index file partly we have used the special-order preserving hash function:
Hollow Trie Monotone Minimal Perfect Hash Function (HT-MMPHF) [1] [2] with
index file. This function identifies the location of the searched file meta-data in the
index file and calculates the limit (how much index file is to be read) and offset of the
index file. With help of limit and offset our technique seeks the index file and loads the
required meta-data to the memory. To access index file randomly may be an expensive
operation in case of the large index files therefore to limit the size of index files another
special hash function: Scalable-Spittable Hash Function (SSHF) [3] [4] [5] is used that
will dynamically distribute the meta-data of the massive number of small files to the
various index file in place of the single index file. The remaining section of the paper is
as follows; Section 2 presents the literature review on the existing techniques to deal
with small file problem. Section 3 presents the proposed technique in detail with
explanation of the HBAF creation algorithm and appending files after creation of the
archive. Section 4 presents details of experimental setup and analysis of the result. At
last Section 5 briefs the conclusion and future work.

2. Related Work: A Brief Survey

Jude Tchaye-Kondi et al. [6] proposed a archive file system, known as the Hadoop
Perfect File. To access and distribute the meta-data of a particular file, special hash
functions with order preserving capacity are used. Jian-feng Peng et al. [7] proposed a
new variant to the HDFS with caching and merging module. The working of these
modules are interrelated, to utilize the memory space efficiently the co-related files are
merged and a special cache is designed for the fast access of the frequently accessed
data. To solve the problem of the small files Xun Cai et al. [8] proposed the optimized

V. Shankar Sharma and N.C. Barwar / A Novel Technique for Handling Small File Problem of HDFS 273

merging algorithm that is based on the correlation and distribution of the files.
Hwajung Kim et al. [9] proposed a digital archive the will significantly reduce the
storage I/O operation by modifying the inode structure of existing file system at both
primary and secondary memory level. Yanfeng Lyu et al. [10] presented an optimized
approach that will reduce the name node memory usage and access time, while
handling massive number of small files. To improve the efficiency of read/write
operation for the small files Xiong Fu et al. [11] proposed block replica placement
algorithm. This algorithm also suitable for the cloud environment. Qi Mu et al. [12]
proposed improved storage architecture for the massive small files. This architecture is
based on the use of the secondary indexes. Tao Wang et al. [13] proposed a technique
called as “Modified PLSA” that handles the massive small files by establishing the
association among the application, access file and access tasks. The balancing of the
data blocks can also be a measure of handling massive small files, Hui He et al. [14]
proposed a unique algorithm that will consider the even utilization of the data blocks
while merging the small files. Songling Fu et al. [15] proposed a technique that will
reduce the memory required for the meta-data management while dealing with millions
of small files. The proposed technique is called as the “iFlatLFS”, which is based on
the concept of the flat storage architecture. Yingchi Mao et al. [16] proposed SIFM
technique that will use the multi level indexing for handling million of small files
efficiently. Bo. Dong et al. [17] categorize the small files logically and structurally. On
the basis of this division prefetching and merging of small files is applied to the
structurally oriented small files and prefetching and file groping concept is used for the
logically oriented small files. Ahad M. A et al. [18] proposed a dynamic merging
technique. This technique identifies the small files by their size and type and Two-Fish
cryptographic technique is used to secure the data in the file system.

3. Proposed Architecture

It is obvious that accessing of small files in HDFS is a complex and time-consuming
task; therefore, to achieve fast meta-data access for small files we have proposed a
Hash Based Archive File (HBAF) method. “Write-Once, Read-Many” is the prime
property of the Hadoop Distributed File System, to keep this property in mind we
designed our proposed technique in such a way that we will be able to append new files
after creation of the archive. Our proposed technique will provide better processing and
accessing performance in comparison to the Hadoop Archive (HAR). As the Figure.1
depicts that our HBAF Archive consist several slave indices files that will be generated
from the temporary master index file using SSHF. Apart from the several index files
HBAF also consists part file (file created after merging small files) and master name
file which consists name of all the small files that be appended to the part file. Index
files are responsible to store the meta-data of the small files; the selection of the
particular index file will be done by the special hash function. In our technique two-
level hashing will be used, at level-1 particular index file is identified by the SSHF and
at level-2 HT-MMPHF order preserving hash function is used to locate the particular
files meta-data location in the index file. The proposed approach HBAF will improve
the performance in two ways, one is by the concept of merging, all the small files are
merged therefore memory utilization will be improved and overall performance of
Name Node will be better, due to the reduced memory load. Another way is the use of
the two-level hash functions to build the index files for small files meta-data that will

V. Shankar Sharma and N.C. Barwar / A Novel Technique for Handling Small File Problem of HDFS274

provide fast access to the small files. While merging the small files, parallel multiple
part files are created, this parallelism will merge the small files comparatively faster
than the HAR. The level of parallelism can be increased or decreased, by default it set
as ‘two’. The whole process can be summarized by Algorithm 1.

Algorithm 1: HBAF Creation & Updation

Step-1: Initial Variable Declaration and their Initialization
1.1 small files // a set of small files;
1.2 slave index file // temporary index files generated by SSHF;
1.3-part file; // creation of initial part file
1.4 temporary master index file; // creation of the initial temp master index file
1.5 master name file; // creation of the master’s name file
1.6 meta-data; // creation of string variable for storing meta-data of small file
1.7 small file name; // creation of string variable for storing name of small file
1.8 final index files; // creation of initial empty final index file
Step-2: Process of Merging Small Files and Building Client-Side

slave_index_files
2.1 start of loop-1; // for each small file from small files
2.2 merge each small file to the part file;
2.3 copy the small file meta-data to the meta-data variable;
2.4 copy the name of small file to the small file name variable;
2.5 append the meta-data of the small file to the temporary master index file;
2.6 append the name of the small file to the master name file;
2.7 provide unique id to the slave index file and final index file by using SSHF;
2.8 append the value of meta-data to the unique slave index file created in previous
step;
2.9 check the threshold limit of the slave_index_file, if limit reaches its maximum,
then create another unique slave index -file and final index file using SSHF and
then continue with the append operation of meta-data
2.10 end of loop-1;
Step-3: Sorting slave_index_files and building final_index_files

3.1 start of loop-2 // for each slave_index_files with unique id
3.2 sort the slave index file’s meta-data
3.3 implement the HT-MMPHF for all the all-slave index files
3.4 associate HT-MMPHF to the respective final index files according to their
mirror slave index files
3.5 copy all the meta-data entries from slave index files to the corresponding final
index files along with order preserving mechanism of HT-MMPHF;
3.6 end of loop-2;

Initially temporary master index file and master name file are created, temporary
master index file is used for the purpose of backup once the slave index files are
created finally this temporary master index file will be deleted, master name file is a
file which reside permanently with the HBAF archive and hold the names of all the
small files to process. Before appending to the part files, small files can be compressed
at client side and can take advantage of fast processing at client side in comparison to
the HDFS. A threshold limit on the capacity of part files is fixed and checked regularly
while appending/adding the files to the part file. Once the threshold limit reached to its

V. Shankar Sharma and N.C. Barwar / A Novel Technique for Handling Small File Problem of HDFS 275

maximum, the new part file will be created and rests of the small files are appended to
the newly created part file. There is also requirement for imposing the limit on the size
of index file because when each time a random seek operations is performed a new
connection is established to read a file from various data node blocks therefore it is
desirable that index file should be less than the size of the HDFS block. One of the
important concerns in our approach is the dynamic distribution of the small files
metadata to the various slave index files, to implement this dynamic distribution we are
using SSHF, later on these slave index files will be converted to the final index files.
The process of building final index files is accomplished in two phases, the first phase
of building final index files starts along with the merging process of small files, when a
small file is added/appended to the part file, simultaneously its meta-data and name of
the file will be added to the temporary master index file and master name file
respectively after that with the help of SSHF its meta-data will be added to the
corresponding slave index file.

Figure 1. Proposed Architecture of HBAF Archive

SSHF belongs to the class of extendible hashing Zhang D. et al. [5] that uses dynamic
hashing technique to allocate meta-data of the small files to the slave index files. In this
technique hash is considered as the bit string and uses an ordered tree data structure
Tarjan R.E. et al. [19] for lookup purpose. Figure 1 the decision of choosing particular
slave index file for the entry of file’s meta-data will be done by the hash function that
will determined by the last two bits of the bit string of a file name hash value. The
entries that have same pattern at last bits will belong to the same slave index file. While
addition and deletion operations are performed on slave index files they grow and
shrink dynamically with help of Scalable-Spittable Hashing. If a slave index file
reaches its threshold limit it spilt and generate a new slave index file. The spilt hash
operation is responsible for the dynamic creation of the slave index files at the same
time slave index files can be directly accessed during look-up. Creation of slave index
files and corresponding final index files is a parallel process, both files are created
simultaneously. Re-arrangement of the meta-data entries is done in newly created slave
index file during the spilt hash operation as it is highly essential for the synchronization
of old and newly spitted slave index file.

V. Shankar Sharma and N.C. Barwar / A Novel Technique for Handling Small File Problem of HDFS276

HT-MMPHF is a perfect hash function, in this function a set of ‘p’ key that are
static type are mapped with the ‘q’ numbers of integer type without any collision and
there should be the value of integer number is always greater than or equal to the value
of static key (q>=P). When value of ‘q’ and ‘p’ is equal, the hash function satisfies the
‘minimal’ property and hash function is called as the minimal perfect hash function. To
preserve the order of keys we are supposed to use order preserving minimal perfect
hash function, this function return the integer values strictly in the order of the static
key, hence using this function the lexicographic order of meta-data entries in final
index files are kept in order. Meta-data entries in slave index file are sorted in
lexicographic order on the basis of file name hash values, these hash values act as the
keys of the hash function and finally the minimal perfect hash function is created and
added in the beginning of the final index files. At last, after writing the entire slave
index files to the corresponding final index files, temporary master index file will be
deleted. The main advantage of this minimal function is that its time and space
complexity (logarithmic) is much lesser in comparison to the other comparative hash
functions. As the meta-data entries in final_index_files are sorted and can be accessed
directly therefore access time of particular record is minimum (Big O (1)) [2].

4. Experimental Setup & Result Analysis

To test the proposed HBAF Archive and other competitive archives, a cluster of 5
nodes is being setup. The configuration of the Name Node and Data Node are same,
that is Intel® core™ i5-7500 CPU@3.40GHz, 64-bit Operating System with 4 GB
Installed RAM. Ubuntu 18.04.1 LTS is used as the operating system with open JDK-
11.0.4 in the system in the cluster. The latest version of Hadoop (3.1.3) is used in all
the machines over the 1 GBPS (Backbone) / 100 MBPS Network. The replication
factor and block size of the HDFS are set to its default values that is 3 and 128 MB
respectively. For the purpose of the testing, we created five data sets with different
number of files i.e., 10000, 20000, 30000, 60000, 120000. The size of files in theses
data sets will ranges from 1 KB to 1 MB. To evaluate the performance of the archives
with proposed technique we have analyzed the few parameters while creation of
archives and few parameters after creation of the archives i.e., Time To Create Archive
(Milli-Seconds), Meta Data Usage (Bytes) are the parameters that will be analyzed
while creating the archives and Time Required to Randomly Accessing 10, 50 and 100
Files from different archives with caching (Milli-Seconds), Time required to randomly
accessing 10, 50 and 100 files from different archives without caching (Milli-Seconds)
are the parameters that will be analyzed after creating the archives. The concept of
caching is all about the using client’s memory while accessing the files from the
archives therefore resultant access time can be reduced. HAR Archive and Map File
Archive supports the caching means corresponding index files are loaded into the
client’s memory when accessed first time after that corresponding files meta-data will
be perfetched on the basis of LRU Bok K. et al. [20] Dong Bo. Et al. [21]. This caching
mechanism put the burden on the client’s memory and will be problematic where
memory is limited at the client side therefore in our proposed design HBAF Archive;
we implemented the concept of the centralized caching of HDFS [22] and use the
memory of the Data Node’s for managing the caching operation

V. Shankar Sharma and N.C. Barwar / A Novel Technique for Handling Small File Problem of HDFS 277

4.1. Time to Create Archive (Milli-Seconds)

Map File Archive will take the minimum time for creation and HAR Archive will take
the highest time for creation. Our proposed approach HBAF Archive lies in between
Map File Archive and HAR Archive. Experimental result shows that proposed HBAF
Archive is 28% to 34% (result varies for different data sets) faster than the HAR
Archive. The Archive creation time of Map File Archive is 56% to 58% faster than the
Hadoop Archive creation time and 24% to 40% faster than proposed HBAF Archive.
Figure.2 depicts that although Map File Archive is taking minimum time for creation as
it is based on the sequential file approach but this cannot be a performance measuring
parameter of the archive, we have considered this parameter only to show that our
proposed approach ‘HBAF Archive’ is taking moderate time for creation of the archive
that is acceptable.

 Figure 2. Time to Create Archive (Milli-Seconds) Figure 3. Meta-data Usage (Bytes)

4.2. Meta Data Usage (Bytes)

Meta Data Usage of the proposed HBAF Archive is minimum in comparison with the
HAR Archive and Map File Archive. There is one important point to note that when
we increase the size of our datasets (i.e., 10000, 20000, 30000, 60000, 120000), we are
continuously getting the better results means there is need of lesser space to manage the
meta-data for larger datasets. This phenomenon proves our theory that proposed HBAF
Archive will be able to handle millions of small files while consuming the minimum
space for storing the meta-data of small files. Experimental result shows that in terms
of Meta Data Usage proposed HBAF Archive perform 28% to 38% (result varies for
different data sets) better than the HAR Archive and 58% to 72% better than the Map
File Archive. These results can be clearly visualized in the Figure.3, which will show
the strength of our proposed approach.

4.3. Time Required to Randomly Accessing 10, 50 and 100 Files from different

Archives with Caching (Milli-Second)

When randomly accessing 10 files, the access time of proposed HBAF Archive is 23%
to 73% (result varies for different data sets) faster than the HAR Archive. Experimental
result shows that Map File Archive will take the highest access time, HBAF Archive is
14 to 18 time faster than the Map File Archive. The minimum access time will be taken

V. Shankar Sharma and N.C. Barwar / A Novel Technique for Handling Small File Problem of HDFS278

by the native HDFS but it can clearly see that proposed HBAF Archive is very close to
the native HDFS. Native HDFS will perform 8% to 21% faster than HBAF Archive. As
the Figure.4 depicts that HBAF Archive will continuously improve the access time
with the increase of the number of files in the data set. To ensure the correctness and
preciseness of the results we also accessed 50 and 100 files from the HBAF Archive
and found the approximately same pattern results. In case of accessing 50 files, HBAF
Archive will be 4 to 34% faster than the HAR Archive. In this case it has been noted
that for lower data sets there is much lesser difference in the performance of the HAR
Archive and HBAF Archive. Experimental result shows that Map File Archive will
take the highest access time; HBAF Archive is 18 to 20 times faster than the Map File
Archive. As the Figure.5 depicts that Native HDFS will perform 10% to 21% faster
than HBAF Archive and HBAF Archive results improve for the larger data sets. If we
calculate the average performance of the native HDFS in comparison with our
proposed HBAF then it is overall 15% faster. In future the work can be carried out to
improve our proposed technique in this direction. In case of accessing 100 files from
the archives, HBAF Archive is 1% to 18% faster than the HAR Archive.

 Figure 4. Access Time for 10 Files with Caching Figure 5. Access Time for 50 Files with Caching

Experimental result shows that Map File Archive will take the maximum access time
and HBAF Archive is 18 times to 22 times faster than the Map File Archive. Figure.6
depicts that there is no impact on the performance of the Map File Archive by varying
the number of files in the data sets. Native HDFS will perform 12% to 22% faster than
HBAF Archive, in terms of average results Native HDFS is 15 to 16% faster than our
HBAF Archive.

4.4. Time Required to Randomly Accessing 10, 50 and 100 Files from different

Archives without Caching (Milli-Second)

As the Figure.7 depicts that the minimum access time will be taken by the native HDFS
and there is very minor and negligible difference between the performance of the
HBAF_Archive and Native HDFS. Native HDFS will perform 5% to 18% faster than
HBAF Archive. The pattern of performance improvement of HBAF Archive is same as
with caching enabled, HBAF Archive will perform better for the larger data sets. To
analyze the pattern, correctness and preciseness of the results, we also accessed 50 and
100 random files from the archives and found the approximately same pattern results
while caching is disabled. Experimental result shows that in case of accessing 50 files,

V. Shankar Sharma and N.C. Barwar / A Novel Technique for Handling Small File Problem of HDFS 279

HBAF_Archive will be 5 to 45% faster than the HAR_Archive that will be same as the
accessing 10 files, means the impact of increasing number of files for accessing is
negligible or is very less. As the Figure. 8 depicts that Map_File_Archive will take the
highest access time; HBAF_Archive is 26 to 28 times faster than the
Map_File_Archive, this will prove that when cache is disabled our HBAF_Archive will
perform better than cache enabled environment.

Figure 8. Access Time for 50 Files without Caching Figure 9. Access Time for 100 Files without Caching

Native HDFS will perform 8% to 14% faster than HBAF_Archive but the performance
of Native HDFS degrades in comparison to the cache enabled environment. As the
Figure.9 depicts that in case of accessing 100 files from the archives, HBAF_Archive is
5% to 43% faster than the HAR_Archive that is more or less equal to the previous
reading while accessing 10 and 50 files. Experimental result shows that as usual
Map_File_Archive will take the maximum access time and HBAF_Archive is 26 times
to 28 times faster than the Map_File_Archive, these results are same as it was with
accessing 50 files. Native HDFS will perform 8% to 11% faster than HBAF_Archive.
There are also few cases where proposed HBAF_Archive will perform better than the
Native HDFS but the difference in the performance is minor therefore it can be
neglected.

 Figure 6. Access Time for 100 Files with Caching Figure 7. Access Time for 10 Files without Caching

V. Shankar Sharma and N.C. Barwar / A Novel Technique for Handling Small File Problem of HDFS280

5. Conclusion and Future Work

The purpose behind the design of the HDFS is to manage the daily growing big
data/large files efficiently and ensure the data availability at all time along with fast
access of the data. The design of HDFS is not compatible with the small files means
handling small files is quite complex in the HDFS in terms of accessing of small files
and their meta-data management. There is requirement of the mechanism that will
handle the small files efficiently as well as reduce the Name_Node memory usage and
access time for the small files. Number of researchers worked in this field and proposed
various solutions to efficiently handle the small files. Most of the solutions provided
reduce the meta-data usage of the Name_Node by shifting the process of indexing at
the client side but these approaches are lagging behind while analyzed in terms access
time. There is a requirement of such a method that will reduce the Name_Node
memory usage as well as provide fast access to the small files. This paper presents
Hash Based Archive File (HBAF) that will provide reasonable fast meta-data access for
the small files along with the appending facility after creation of the archive. Data
Node’s are used for the purpose of the caching; this concept will reduce the memory
pressure from the client side that results in the reduced access time for the small files.
Small file’s meta-data will be placed to the particular slave index file with help of the
special hash function (SSHF). The use of this hash function for placement of meta-data
will lead to the efficient seek operation for accessing the content of the small files. To
preserve the order of the meta-data stored in the final index files a order preserving
hash function (HT-MMPHF) is used. With help of this hash function, we will be able to
read the final index files partially means when there is a access request for a particular
small file’s meta-data, final index files are read partly (only the part which contain the
accessed file’s meta-data), there is no need to read the entire index file hence this will
result in the faster meta-data access form the final index files.

Experimental result shows that Proposed HBAF Archive performing better than
the HAR Archive and Map File Archive. It is clear that when caching is disabled the
access time will be very higher in case of the HAR Archive, its due to the multi level
index files in the HAR Archive, but our approach is not affected form the impact of
caching enable or disabled as our approach is not dependent on the client’s memory.
There is little limitation in our approach that cannot be addressed in this paper; these
limitations will be resolved in future. The following are the key points for the future
work on our approach.

 Experimental result shows that in terms of access time our approach performing
better than the HAR Archive and Map File Archive but when it compared to the
native HDFS, the results are not satisfactory; the further work can be carried out to
make our approach better than the native HDFS.

 A number of other hash function combination can be used to further improve the
performance of the proposed HBAF Archive.

 In this paper text files are considered as data sets, proposed HBAF Archive can
also be modified for other file formats and results can be compared with original
one.

 The minimization of client memory usage can be carried out, there is need to
identify the various factors in our approach that are still using the client memory
i.e., client memory used by the hash functions.

V. Shankar Sharma and N.C. Barwar / A Novel Technique for Handling Small File Problem of HDFS 281

 We have proposed the appending facility to proposed HBAF Archive; deletion
facility is still a future work in our approach.

 While merging small files, we have not applied any compression technique,
implementing a compression technique at HDFS block level will be a future work
for our approach.

References

[1] Belazzougui, Djamal & Boldi, Paolo & Pagh, Rasmus & Vigna, Sebastiano. (2009), Theory and
Practice of Monotone Minimal Perfect Hashing. 2009 Proceedings of the 11th Workshop on Algorithm
Engineering and Experiments, ALENEX 2009. 132-144. 10.1137/1.9781611972894.13.

[2] Belazzougui, D., Boldi, P., Pagh, R., & Vigna, S. (2009). Monotone minimal perfect hashing: searching

a sorted table with O(1) accesses. SODA.
[3] Mendelson, G., Vargaftik, S., Barabash, K., Lorenz, D.H., Keslassy, I., & Orda, A. (2018).

AnchorHash: A Scalable Consistent Hash. ArXiv, abs/1812.09674.

[4] Claessen, K., & Palka, M. (2013). Splittable pseudorandom number generators using cryptographic

hashing. Haskell '13.
[5] Zhang D., Manolopoulos Y., Theodoridis Y., Tsotras V.J. (2018) Extendible Hashing. In: Liu L., Özsu

M.T. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/ 978-
1- 4614-8265-9_741

[6] Tchaye-Kondi, et al. (2019) Hadoop Perfect File: A Fast Access Container for Small Files with Direct
in Disc Metadata Access. ArXiv.org, 26 Apr. 2019, arxiv.org/abs/1903.05838.

[7] Peng, J., Wei, W., Zhao, H., Dai, Q., Xie, G., Cai, J., & He, K. (2018). Hadoop Massive Small File
Merging Technology Based on Visiting Hot-Spot and Associated File Optimization: 9th International
Conference, BICS 2018, Xi'an, China, July 7-8, 2018, Proceedings. 10.1007/978-3-030-00563-4_50.

[8] Cai, Xun, et al. (2018) An Optimization Strategy of Massive Small Files Storage Based on HDFS.
Proceedings of the 2018 Joint International Advanced Engineering and Technology Research
Conference (JIAET 2018), 2018, doi:10.2991/jiaet-18.2018.40.

[9] Kim, H., & Yeom, H. (2017). Improving Small File I/O Performance for Massive Digital Archives.
2017 IEEE 13th International Conference on e-Science (e-Science). doi:10.1109/escience.2017.39.

[10] Lyu, Y., Fan, X., & Liu, K. (2017). An Optimized Strategy for Small Files Storing and Accessing in
HDFS. 22017 IEEE International Conference on Computational Science and Engineering (CSE) and
IEEE International Conference on Embedded and Ubiquitous Computing (EUC). doi:10.1109/cse-
euc.2017.112.

[11] Fu, X., Liu, W., Cang, Y., Gong, X., & Deng, S. (2016). Optimized Data Replication for Small Files in
Cloud Storage Systems. Mathematical Problems in Engineering, 2016, 1–8. doi:10.1155/2016 /4837894.

[12] Mu, Q., Jia, Y., & Luo, B. (2015). The Optimization Scheme Research of Small Files Storage Based on
HDFS. 2015 8th International Symposium on Computational Intelligence and Design (ISCID).
doi:10.1109/iscid.2015.285.

[13] Wang, T., Yao, S., Xu, Z., Xiong, L., Gu, X., & Yang, X. (2015). An Effective Strategy for Improving
Small File Problem in Distributed File System. 2015 2nd International Conference on Information
Science and Control Engineering. doi:10.1109/icisce.2015.35.

[14] He, H., Du, Z., Zhang, W., & Chen, A. (2015). Optimization strategy of Hadoop small file storage for
big data in healthcare. The Journal of Supercomputing, 72(10), 3696–3707. doi:10.1007/ s11227-015-
1462-4.

[15] Fu, S., He, L., Huang, C., Liao, X., & Li, K. (2015). Performance Optimization for Managing Massive
Numbers of Small Files in Distributed File Systems. IEEE Transactions on Parallel and Distributed
Systems, 26(12), 3433– 3448. doi: 10.1109/tpds. 2014.2377720.

[16] Mao, Yingchi, et al. (2015), Optimization Scheme for Small Files Storage Based on Hadoop
Distributed File System. International Journal of Database Theory and Application, vol. 8, no. 5, 2015,
pp. 241–254., doi:10.14257/ijdta.2015.8.5.21.

[17] Dong, B., Zheng, Q., Tian, F., Chao, K.-M., Ma, R., & Anane, R. (2012). An optimized approach for
storing and accessing small files on cloud storage. Journal of Network and Computer Applica-
tions, 35(6), 1847–1862. doi:10.1016/j. jnca.2012. 07.009.

[18] Ahad, M. A., & Biswas, R. (2018). Dynamic Merging based Small File Storage (DM-SFS) Architecture
for Efficiently Storing Small Size Files in Hadoop. Procedia Computer Science, 132,

V. Shankar Sharma and N.C. Barwar / A Novel Technique for Handling Small File Problem of HDFS282

[19] Tarjan R.E., Werneck R.F. (2007) Dynamic Trees in Practice. In: Demetrescu C. (eds) Experimental
Algorithms. WEA 2007. Lecture Notes in Computer Science, vol 4525. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-72845-0_7

[20] Bok, K., Oh, H., Lim, J. et al.(2017) An efficient distributed caching for accessing small files in
HDFS. Cluster Compute 20, 3579–3592 (2017). https: //doi.org/10.1007/s10586-017-1147-2

[21] Dong, Bo & Zhong, Xiao & Zheng, Qinghua & Jian, Lirong & Liu, Jian & Qiu, Jie & Li, Ying. (2010).
Correlation Based File Prefetching Approach for Hadoop. Proceedings - 2nd IEEE International
Conference on Cloud Computing Technology and Science, CloudCom 2010. 41-48.
10.1109/CloudCom.2010.60.

[22] Zhang, Jing & Wu, Gongqing & Xuegang, Hu & Wu, Xindong. (2012). A Distributed Cache for
Hadoop Distributed File System in Real-Time Cloud Services. Proceedings - IEEE/ACM International
Workshop on Grid Computing. 12-21. 10.1109/Grid.2012.17.

V. Shankar Sharma and N.C. Barwar / A Novel Technique for Handling Small File Problem of HDFS 283

