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Abstract. Source code summarization is the methodology of generating the 
description from the source code. The summary of the source code gives the brief 
idea of the functionality performed by the source code. Summary of the code is 
always necessary for software maintenance. Summaries are not only beneficial for 
software maintenance but also for code categorization and retrieval. Generation of 
summary in an automated fashion instead of manual intervention can save the time 
and efforts. Artificial Intelligence is a very popular branch in the field of computer 
science that demonstrates machine intelligence and covers a wide range of 
applications. This paper focuses on the use of Artificial Intelligence for source 
code summarization. Natural Language Processing (NLP) and Machine Learning 
(ML) are considered to be the subsets of Artificial Intelligence.  Thus, this paper 
presents a critical review of various NLP and ML techniques implemented so far 
for generating summaries from the source code and points out research challenges 
in this field. 
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1. Introduction 

Summarization can be viewed as transformation of data into a concise yet meaningful 

representation which could be used further for analysis or storage. There are different 

use cases of the summarization like Document summarization [1][2], Newsletter 

summarization [3], Summarization of information over social media, Generating 

summaries over videos [4], Summaries of the content within email [5]and Summaries 

over the programming language code. 

Source code summarization is a methodology of understanding the functionality 

performed by the source code and automatically generating the descriptions out of the 

source code. Proper documentation makes the software system maintainable. Correct, 

complete, and consistent documentation leads to successful maintenance of the 

software system [6]. The comment written with respect to source code should exactly 

specify the functionality performed by the code. The comment should include all the 

necessary information which is performed by the source code. Also, the comment 
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written should follow the same format throughout the whole document. 

In this paper we present a review of various source code summarization 

methodologies implemented so far using different natural language and machine 

learning techniques.    

2. Need of Source Code Summarization 

This section gives brief idea about the different use cases where source code 

summaries or comments written are useful. 

2.1. Software Maintenance 

The software document is an artifact which communicates the information about the 

software system to the people implicated in the production of that software. The people 

involved here are the customers, developers, project leaders as well as managers [7]. 

According to the survey conducted regarding the problems faced by developers in [8], 

66 % developers faced challenges while understanding motive or purpose of the piece 

of code. Understanding code written by someone else is a serious problem rated by 

56% developers. 17% developers find it difficult to understand their own code written 

just a while ago. This shows properly written documentation regarding the source code 

is important in the software maintenance.  

2.2. Code Categorization 

In software development finding relevant application in similar category is important to 

understand the functionality and useful for reusing the common functionality [9]. 

Programmers can save much time by finding the functionality in similar applications. 

For finding some application, one can search according to categories such as 

“Business”, “Communication”, “Audio/Video”, “Games” etc [10]. The problem to find 

relevant functionality in similar category is due to the mismatch between descriptions 

written and implementation done. Thus, well written description written in natural 

language will be helpful in the code categorization. 

2.3.  Code Search 

A code search is general activity while developing a source code. According to the 

survey conducted among developers regarding the code search [11], 33.5 % people 

search to refer the example code. 26 % people read or explore the code. 16% search for 

code localization like “where class is instantiated”. 16% refer the code to determine the 

impact like “understanding the dependencies” or “find side effect of proposed 

changes”.8.5% refer for metadata like “who recently touched the code”.   Also, 

according to the same survey, on an average developer creates 12 search queries as per 

each working day. This show searching a code is a frequent and highly important 

activity. The performance of the code search is highly depending on the text involved 

in the search term and the code snippets [12]. Code search is difficult when search term  
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specified as input do not have the same words as the corresponding source code. Thus, 

well written comments will lead to effective code search. 

3. Source Code Summarization Methodologies 

As discussed earlier, source code summarization is task which generates the comments 

from the given code snippet. In this section, we present some existing techniques 

implemented for source code summarization which includes encoder-decoder model, 

language model, and reinforcement learning etc. 

3.1. Deep reinforcement learning based code summarization. 

Reinforcement learning is paradigm in Machine Learning which takes suitable action 

to maximize the reward for given situation. In [13], for generating relevant summary 

from the source code, deep reinforcement learning methodology is used. This 

framework is also known as Actor-Critic network which is used to generate the 

comments. The confidence to predict the next word is calculated by Actor network 

whereas Critic network evaluates the value calculated by the actor network. Figure. 1 

shows the overview of this framework. 

 

 
 

Figure 1. Overview of proposed code summarization framework [13]. 

 

This proposed architecture is based on encoder-decoder framework. Hybrid code 

representation is “Encoder” in this encoder-decoder framework.  In this work, 

sequential tokens as well as structural information is utilized for the code 

representation. The sequential tokens of the code snippet are denoted by Long Short-

Term Network (LSTM) whereas structural information of the source code called as 

semantics is preserved by Abstract Syntax Tree (AST). AST also maintains the 

hierarchical representation of the source code. LSTM based on AST represents the 

structural contents of the code snippet. Thus, sequential as well as structural contents of 

the code snippet are represented in the “Hybrid code representation”. 

     Actor-critic network acts as a “Decoder” in this encoder-decoder framework. Actor 

network calculates next word’s probability distribution with respect to the current state. 

Softmax function is used to predict the next word.  Critic network approximates the 
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value generated by the actor network at each time step. In this work, the evaluation 

score i.e., Bilingual Evaluation Understudy (BLEU) is defined as reward. 

    The proposed work effectively captures the semantics of the code snippet due to use 

of AST. Also, actor-critic network predicts the summary, which resolves exposure bias 

issue. But this model is evaluated only on certain Python code and comment pairs, 

which may not represent all the types of comments and not generalized for other 

programming language. Also, only BLEU score is utilized in order to calculate the 

reward, which may not satisfy human evaluation criteria.  

 

3.2. Statistical Machine Translation based code summarization. 

Statistical Machine Translation (SMT) is a methodology for translation among two 

natural languages, which is adopted in [14]. SMT is basically Natural Language 

Processing technique (NLP) which identifies grammatical rules from the two languages 

such as English, Hindi and translates into corresponding language. Phrase Based 

Machine Translation (PBMT) is utilized which identifies phrase to phrase relationship 

among source and destination sentence. In PBMT modeling, set of phrase pairs 

introduced, which include source sentence and target subsequence. Consider an 

example for the statement: if x %5 == 0, Its phrase pair is: “if” → “if”, “x” → “x”, “% 

5” → “by 5”, “== 0:” → “is divisible”. “Phrase table” is used to generate phrase pair, 

which contains various phrase-to-phrase relationships with probabilities. Here to 

maintain the grammatical structure of the natural language, reordering is performed. 

Figure 2 shows the overview of PBMT technique for pseudo code generation. As 

shown in the figure, Phrase translation model calculates the probability Pr with respect 

to Target t and Source s. Reordering model calculates Probability Pr for arrangement of 

each phrase with respect to given Phrase pair ϕ and Alignment a. Language model 

finds the fluency of target sentence t.  

 

 
 

Figure 2. Python to English pseudo-code generation using PBMT technique [14] 
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PBMT is not able handle hierarchical correspondence of the source code and thus Tree 

to String Machine Translation (T2SMT) is useful. It makes use of parse tree of the 

input sentence. In this technique instead of phrase pair, “derivation” is introduced, 

where it represents relationship between source subtree and target phrase.  

The above proposed approach is based on rule-based machine translation; thus, it 

can be generalized for variety of languages by applying corresponding rule. But this 

methodology does sentence wise translation due to which it is unable to handle 

multiple statements. 
 

3.3. Code summarization based on Natural Language Generation  

Natural language generation is a subfield of AI which translates given data into natural 

language such as English. In [15], source code summarization technique is utilized 

which generates description in English for given Java code. This approach is works by 

analyzing how method is invoked. In this approach, PageRank algorithm is used to find 

most important method in the most important context. Then Software Word Usage 

Model (SWUM) identifies the keywords from the action performed the important 

methods. 

Finally, the custom Natural Language Generation (NLG) technique to generate the 

English descriptions which describes what methods actually do. In this NLG technique, 

first 6 different types of messages are created which represents different contexts of the 

methods. Table 1 shows different types of messages and its corresponding explanation. 

 

Table 1. Types of messages 

Message Type Explanation 

 

Quick Summary Message This is short sentence which gives description of the 
function.

Return Message Return type of the method is given by this type of 
message.

Importance Message It shows the importance of the method based on 
PageRank.

Output Used Message This is to describe maximum 2 methods which calls this 
method.

Call Message This describes maximum 2 methods which is called by 
this method.

 

Next step is lexicalization, in which according to above message type phrases are used 

to describe it. After lexialization, more readable phrases are generated in the 

aggregation. Finally, senteneces are generated from the phrases generated from above 

step. 

The above proposed approach makes use of context specific information, due to 

which it provides meaningful situation based or contextual output.  

3.4. Tree Convolutional Neural Network (Tree CNN) based source code summarization. 

Convolutional layer applied to neural network helps to extract important features from 

the input. In [16], Tree CNN is utilized in which program’s structure is captured using 
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Abstract Syntax Tree (AST). AST generally captures syntactic structure of the 

language using hierarchical representation. Each component in the program is 

represented as AST’s node. AST’s node is denoted as a vector based on coding 

criterion. Then convolutional layer detects the structural features of the program. The 

new tree generated after convolution, has same size and shape as of original one. To 

solve this issue, dynamic pooling is utilized. This proposed approach basically 

classifies program according to corresponding functionality. 

Above proposed work captures the meaning of the code snippet due to its 

hierarchical representation by using AST. But it exposed to training data which may 

cause it to suffer from the exposure bias. 

 

3.5. Source code Markup Language (SrcML) based code summarization. 

Source code Markup Language (SrcML) converts the source code of the various 

programming languages like Java, C, and C++ to XML file [17].  In the proposed work 

[18], input is the XML file for the given code snippet and output is the document file. 

This target document file is a combination of various parts in which every part gives 

description of the important part of the code snippet. SrcML considers numerous 

factors like white spaces, classes, parameters, and conditions and accordingly XML 

files is generated. The main components of the source code are represented with the 

help of the tags in XML like <class>, <function>, <loop> etc. Feature extractor fetches 

the data generated from XML file. Using XPath, queries are performed to identify each 

object from the code snippet that extracts four features: attributes, conditions, calls, 

functions. The variables or parameters included in the source code are identified as 

attributes. The tag<decl> is used to fetch these attributes. Conditions include “if” 

conditions as well as several types of loops. Number of calls performed by the source 

code are grouped into calls and are presented with the tag <call>. The functions with 

the name and the data type of the value returned by the code snippet are represented 

with the tag <function>. The feature extractor generates a program structure 

information file that can be used by code description generator. Code descriptor 

generator reads two files one is source code, and another is program structure 

information file then generates the comments based on the source code and related 

information. 

The above proposed model makes use of tags which focuses on core components of 

the code, due to which complete and clear comments can be generated. Although it 

focuses on main concepts of code but does not show the inheritance relationships 

among classes. Also, proposed model only considers Object oriented aspects of the 

programming language and thus its useful only in case of object-oriented language. 

4. Conclusion 

Source code summarization technique generates the descriptions from the source code, 

which describes what source code intend to perform. Summary of the source code is 

useful for software maintenance, code search as well as code categorization. 

Most of the existing source code summarization techniques were unable to capture 
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the structure of the source code and facing the exposure bias issue. Also, it is necessary 

to build the source code summarization technique that will have human evaluation 

criteria as well.  In future, Generative Adversarial Networks (GAN) in which generator 

and discriminator can be combinedly designed to generate the summary which can be 

helpful to deal with the exposure bias issue. 
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