Advances in Parallel Computing Technologies and Applications 315
D.J. Hemanth et al. (Eds.)

© 2021 The authors and 10S Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC210154

Model for Refactoring a Software Using
Feature Oriented Dependency (FOD)

Malathi S !

4 Lecturer in Computer Engineering (Deputed from Annamalai University), Srinivasa
Subbaraya Govt Polytechnic College-Puttur

Abstract. Refactoring is the process of improving the code of the software without
affecting the external behavior of the code only by reconstruct the internal structure
. It makes code cleaner, clearer, simpler or in other words, clean up the code. It
also improves the quality of code then it became more reliable and easy to maintain
through lifecycle of software. Refactoring has become renowned concept in soft-
ware development process. The IDE (Integrated Development Environment) highly
prefer this technique. Researches on refactoring technique have improved now a
day. Beyond that , this particular technique is used to improve different functions
of application software. It mainly speed up the function and helps to get the output
much faster. In this proposed work Feature Oriented Dependency (FOD) tool is cre-
ated used for refactoring process established on a chemical reaction optimization
meta heuristic approach to discover the appropriate refactoring resolutions.

Keywords. Refactoring, Restructuring, Re-engineering, Reverse engineering.

1. Introduction

FOD methodology utilized using refactoring as re-engineering technique, the main con-
cept of the FOD is to mold a software system according to the structures it provides i.e
divide and run them independently, the objective is to build well-structured software that
can be personalized to the requirements of the user and the application.

From a set of features, various different software systems can be produced, to share
common features and also to add different features, in any software development, the
domain analysis method can be used, a problem is analyzed and the solution for the
problem is also defined.

Outsized and composite software systems require a strong understanding of desired
system features, capabilities of the software are mandatory to implement those structures,
software refactoring, long promised enhancements will become feasible only when the
features and aptitudes are common to systems, the systematic exploration of software
systems to be defined cohesion is called domain analysis.

'Malathi S, Department of Computer Engineering, Srinivasa Subbaraya Govt Polytechnic College, Puttur.
E-Mail: malathisivasamy 1980@ gmail.com.

316 Malathi S / Model for Refactoring a Software Using Feature Oriented Dependency (FOD)

2. Literature review

Kyo Kang [1] presented a domain analysis in which one technique that can be applied to
meet this condition. By observing a class of related software systems and the common
underlying theory of those systems, domain analysis can offer a reference model for
describing the class. It can provide a basis for understanding and communication about
the problem space addressed by software in the domain. Domain can also propose a set
of architectural approaches for the execution of new systems.

John MCGregor [2] evaluated domain analysis, domain engineering, domain spe-
cific language and many other wildcard matches applies to the term domain. Domain
may be thought of in several different ways. Many of the technical explanations view
a domain as the subject for a family of programs. For example, telephone call switch-
ing systems. Domain based approach provides a context for software development that
creates synergy with other business activities of the company generating strategically
significant results.

Sukhdeep Kaur and Raman Maini [3] proposed that refactoring is a crucial process
to improve the quality of software. Refactoring is a part of software engineering that
expands more readability of program and maintainability of the software. Refactoring
is a mostly used technique that gives the code simpler, cleaner, reusable, extendable,
maintainable or other features by transforming a program. In programming language bad
smell or code smell is a code or design problem that makes the software that specifies a
problem, may be desired in it refactoring of code. In this paper some refactoring tech-
niques discussed that are used to eradicate code smells from code or program.

Javier Perez et al. [4] presented a case study to evaluate the fitness of graph con-
version tools for program refactoring. Adding quality for this purpose, a graph transfor-
mation system must be able to import a graph based on the models of java programs.
Case study of this aims to enable comparison of various features of graph conversion
tools, such as their expressiveness and their ability to interact with the user. The model
of java programs is presented and some examples for translating JAVA source code into
the model are provided.

Sangeetha [5] proposed refactoring id typically done in small stages. After every
small steps we left with a working system that is functionally unchanged. So refactoring
does not preclude changing functionality, it just says that it’s a different activity from
reorganizing code. It implies equivalence, the beginning and elegant or in other words.
Refactoring is a well defined process that improves the quality of systems and allows
developers to renovate the code that is becoming hard to maintain, without throwing
away the existing source code and starting again. By careful application of refactoring
the system behavior will remain the same, but return to a well structured design. FODA
tools makes it more likely that the developer will perform the necessary refactoring, since
the tools are much quicker and reduce the chance of introducing bugs.

U.Devi et al. [6] said refactoring is effectively known to remove the problem of code
clones. Replicated code fragment in source code, usually known as code clones. Refac-
toring is a general and capable technique to remove the problem of code clones. Refac-
toring is the sequence of code changes which improve the quality of design (internal
structure) without changing the behavior of software (external structure). Refactoring is
usually a small change to the software. Code clones are categorized and detected based
on certain established approach the tools which have been given are able to categorize

Malathi S / Model for Refactoring a Software Using Feature Oriented Dependency (FOD) 317

code clones based on the approaches. Refactoring is one remedial measure to tackle with
the problem of code clones.

William [7] presented software refactoring is the systematic practice of improving
application code’s structure without altering it behavior. Refactoring is somewhat that
he as an knowledgeable developer naturally did to his code, without deliberately think-
ing about it. It’s a core element of agile approaches, and most professional IDE’s in-
clude refactoring tool. Although the invention of refactoring and it is implementation
into professional practice were practically destined. Refactoring tools and software pro-
cesses such as agile development, a project team can now more freely choose to invest in
software design. Designers are no more omniscient that before, but refactoring investing
early only in design that will surely pay off down. API will be used many subsystems
while delaying other design investment until the issues become clears.

Ramalakshmi and Gayathri Devi [8] evaluated Refactoring is done to develop the
quality of a software system’s structure which tends to reduce as the system evolves.
While manually determining useful refactoring is a challenging task search based tech-
niques can automatically discover suitable refactoring. Refactoring approach uses the
concept of pare to optimality which naturally applies to search based refactoring. Before
refactoring is done, the test case should be generated. A formal written test case is con-
sidered by a known input and by an expected output, which is worked out before the test
is performed.

Woo- Chang Shin and Jungkyn Rho [9] characterized a refactoring tool that can
modify the internal structure of software to a more easily understandable and modifi-
able structure that enormously affects software maintenance productivity. This paper pro-
posed a code model to support software maintenance tool developers to easily access
and handle software source codes. Also it displayed the implementation method of the
software refactoring operation.

John Grundy and John Hosking [10] proposed several tools that have been estab-
lished to support automation in both narrow and broad domain ranging across Artificial
Intelligence (AI) tool kits such as theorem proves and model checkers requirements, de-
sign coding and testing support tools. They verified various configuration management
process enhancement and project management support tools and code generators, code
analysis, visualization, refactoring and reverse engineering tools.

3. Software Refactoring

Process of altering a software system in such a way that it does not modify the external
behaviour of the code , it develop the internal structure, such that it increases code quality,
reliability and maintainability throughout life cycle, makes software easier to understand
and improves maintainability

3.1. Feature modeling

Software consists of features such as A, B, C, D, E and F As per the need of cus-
tomers,these needed features can be given to them through refactoring with the help of
the FOD tool. FOD tool could help to divide and run the features as per the need by the
customers

Malathi S / Model for Refactoring a Software Using Feature Oriented Dependency (FOD)

4. Metrics of FOD

Table 1. Average Performance for FOD before and after Refactoring

Tools Before Refactoring with KLOC | After Refactoring with KLOC
SPS 10 5

KAPTUR 15 10

CTA 20 10

DESIRE 6 5

FOD 5

Table 2.

Average Performance of CBO and LSCC

TOOLS CBO | LSCC
SPS 7.9 5.45
KAPTUR 8.8 3.8
CTA 3.5 3.02
DESIRE 35 1.7
FOD 10.5 9.5

The first, metric CBO (Coupling Between Object) classes symbolizes the number of
classes combined to a given class. The coupling is achieved by the following factors such
as method calls, field accesses, inheritance , arguments return types, and exceptions.

The second metric Low Level Class Cohesion (LLCC). Metric denotes the classes,
Meaningful class coupling and cohesion metric helps object-oriented software develop-
ers identify class design weaknesses and refactoring classes consequently. The results
show that LLCC is better than CBO metric.

25 12
20 10 +
15 Before 8
Refactoring
with KLOC
. After
10 Refactoring 6 - CBO
with KLOC s | SCC
5 4
o 2
] &
£ &F F &S
- < 0

SPS KAPTUR CTA DESIRE FOD

Figure 1. KLOC Vs Tools with Before and Af-

ter Refactoring Figure 2. KLOC Vs Tools with CBO and LSCC

The advantage of the proposed system is to improve the code readability. Computa-
tional cost or Complexity is reduced by using the propose methods. It also improves the
performance of the system. In Table 1 shows the average performance of FOD before

Malathi S / Model for Refactoring a Software Using Feature Oriented Dependency (FOD) 319

and after refactoring. Some of the automobile spare parts project, comparing five differ-
ent tools with FOD, The thousands of (Kilo) Lines Of Code (KLOC) is decreased in our
proposed work as shown in the table. Table 2 shows average performance of FOD tool is
compared with other tools. The FOD tool gives better results than other tools. Figure 1
shows the accuracy performance for FOD before and after refactoring, number of lines
are reduced after refactoring. FOD tool provides better results compare to other tools.
Figure 2 shows the accuracy performance for FOD before and after refactoring, number
of lines are reduced after refactoring. FOD tool provides better results compare to other
tools such as SPS, KAPTUR, CTA, DESIRE. It shows FOD tool gives better results than
other tools, based on clarity of the code and speed of the execution.

5. Conclusion and Future work

This research work proposed to FOD Tool which is established and executed success-
fully. By this tool any application software is refactoring. Any application software is
developed through FOD. Each modules separately given to the users and run indepen-
dently. Our experimental results displays the efficiency of our approach compared with
existing approaches and different others meta heuristic approaches. We plan to study and
implement this model in several number of other mission critical applications, their fea-
tures and different languages which could be possibly applied by FOD tool so as to cre-
ate new applications, this extension would require the possibly of adding new features in
the FOD tool, for example, economical decisions over the extended feature model and
checking a product which cost less than others.

References

[11 Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS. Feature-oriented domain analysis (FODA)
feasibility study. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst. 1990 Nov 1:01-94.

[2] John McGregor D. Journal of object technology. Chair of Software Engineering. 2004;3(7):71-81.

[3] Kaur S, Maini R. A comprehensive review of refactoring techniques. International Journal of Latest
Technology in Engineering, Management & Applied Science. 2015 Oct;4(10):78-83.

[4] Pérez], Crespo Y, Hoffmann B, Mens T. A case study to evaluate the suitability of graph transformation
tools for program refactoring. International Journal on Software Tools for Technology Transfer. 2010
Jul;12(3):183-99.

[S] Sangeetha V, Sangeetha M. Fascinating Perspective of Code Refactoring. International journal of Ad-
vanced Research in Computer Science and Software Engineering. 2016 Jan;16:164-8.

[6] Devi U, Sharma A, Kesswani N. A Study on the Nature of Code Clone Occurrence Predominantly in
Feature Oriented Programming and the Prospects of Refactoring. International Journal of Computer
Applications. 2016;141(8):39-44.

[7] Griswold WG, Opdyke WF. The birth of refactoring: A retrospective on the nature of high-impact soft-
ware engineering research. IEEE Software. 2015 Sep 23;32(6):30-8.

[8] Ramalakshmi B, Devi DG. An Efficient Sdmpc Metric Based Approach For Refactoring Software Code.
International journal of Engineering and computer science. 2015 May;14:11733-42.

[9] Shin WC, Rho J. Implementation of software refactoring operation using a code Model. International
journal of Software Engineering and its Applications. 2014;8(6):17-30.

[10] Grundy J, Hosking J. Guest editors introduction: special issue on innovative automated software engi-
neering tools. Automated Software Engineering. 2013 Jun;20(2):137-9.

