
Deep Learning Based Static Analysis of
Malwares in Android Applications

Nivedha K a,1, Indra Gandhi K a, Shibi S a Nithesh V a and Ashwin M a

a Department of Information, Science and Technology, Anna University, Chennai, India

Abstract. Android is a widely distributed mobile operating system developed es-
pecially for mobile devices with touch screens. It is an open source, Google-
distributed Linux-based mobile operating system. Since Android is open source, it
enables Android devices to be targeted effectively by malware developers. Third-
party markets do not search for malicious applications in their databases, so in-
stalling Android Application Packages (APKs) from these uncontrolled market
places is often risky. Without user’s notice, these malware infected applications
gain access to private user data, send text messages that costs the user, or hide
malware apk file inside another application. The total number of new samples of
Android malware amounted to 482,579 per month as of March 2020. In this pa-
per deep learning approach that focuses on malware detection in android apps to
protect data on user devices. We use different static features that are present in an
Android application for the implementation of the proposed system. The system
extracts various static features and gives them to the classifier for deep learning and
shows the results. This proposed system will assist users in checking applications
that are not downloaded from the official market.

Keywords. Android, APKs, Malware Detection, Third-party markets, Deep
Learning.

1. Introduction

In smartphones and tablets, Android is the world’s best-selling Operating System. The
presence of number of markets present in Android like Google Play Store and other third-
party markets also encourages the malware developers to develop a malicious applica-
tion. The number of malware samples targeting Android has risen over the last few years.
The reason is because there are a lot of third-party markets that are not monitored and
regulated properly. The open architecture of Android enables users to install apps that do
not inherently come from the Google Play Store. We can estimate that over 20,000 new
apps are released every month, with over 1 million apps available for download from
Google’s official market, and probably another million distributed across third-party app
stores. An attacker can pick up and change any benign application and upload its code
to third-party markets, making users think it is not a malicious application. Android is
known for its free, ready-made, low-cost and open source license, which was developed

1Nivedha K, Department of Information, Science and Technology, Anna University, Chennai.
E-mail: niveda0394@gmail.com.

Advances in Parallel Computing Technologies and Applications
D.J. Hemanth et al. (Eds.)
© 2021 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC210133

133



by Google. Application support is the main drawback in Android, given its capabilities.
It usually takes months before it reaches the user if a new version of the Android oper-
ating system or a security patch is issued [1]. They don’t really reach out at all. This is
due to the large range of Android device manufacturers and hardware. In the machine
learning community, Deep Learning (DL) is gaining more and more attention. In the field
of Image detection, Natural Language Processing and Speech Recognition, Deep Learn-
ing Classifiers have inspired a great number of successful approaches. In order to im-
prove detection accuracy, DL classifiers have also been used recently for malware analy-
sis. Since Deep Learning models are trained by feature learning rather than task-specific
algorithms, they can recognize more characteristics than traditional machine learning
techniques.

2. Related work

Static analysis detects malware based on the information that is present in an APK file.
The static analysis features and techniques for detecting android malware is widely ex-
plored in this section.

Hota et al. [2] explained static analysis as the analysis of software without actually
executing the program. Static analysis is one of the malware detection techniques that
uses less computation. They read the bytes that are present in the dex file as input and
they one hot encoded those bytes and then fed them to a Long Short Term Memory Net-
work (LSTM). The final output is used to classify a particular application as malware
or benign. They were able to achieve 95.3% accuracy. Also Naway et al. [3] provides a
detailed explanation about the static features and their role in the detection of malware
in android. The authors of [4,5] discussed permission misuse by android apps using a
static analysis tool of identification stating that it is possible to obtain all the manifest
file permission. In order to gain understanding of the purpose of the study, they review
and give the reader the required preliminary information on android and static analysis.
They explain the concept of static program analysis, permissions and analysis technique.
The findings of this job can help encourage Android malware detection studies based on
techniques of deep learning. Also [6,7] designed a more simplified instruction set since
there are a lot of Dalvik opcodes to process. They analysed multiple smali files and dis-
covered that there certain instructions have multiple opcodes because of parameters. For
example, the same opcode will be used different operands, since operands maybe 8-bit or
16-bit. Based on the frequency of occurrence and core semantics they have identified 107
Dalvik opcodes. Then, group the similar instructions together using a single character.
For example G for all the branch statements goto16, goto/32 since they do the same job.
Then they use apk tool to get the smali files from the apk file. They then extract all the op-
codes from the reduced instruction set and they map the opcodes to their corresponding
characters.

3. Problem description

The architecture of android malware detection using static analysis is given in Figure 1.
Two static analysis models are developed for detecting android malware.

Nivedha K et al. / Deep Learning Based Static Analysis of Malwares in Android Applications134



Figure 1. Android malware detection using static analysis

For training the first model, DREBIN dataset is used. It is a popular dataset used
for static analysis of android malware detection. The dataset contains 5,560 applications
from 179 different malware families. The samples were collected between August 2010
and October 2012, and the MobileSandbox project made them available to DREBIN.
For training the second model, a 3gram opcode dataset is used for detecting android
malwares.

Deep Neural Network algorithm is used to train both the models. The first one to
detect android malwares using the static features Intents, API calls and permissions [8].
The second one to detect android malwares using the static feature opcodes [9,10]. The
models are saved once it is trained with good accuracy. If an application has to classified
as either benign or malware, the apk file of that particular application is decompiled and
features are extracted from the application, then the saved model is loaded and provided
with the feature set for prediction [11].

We decompile the APK file using tools such as Androguard and Apktool to extract
static information about a specific android application. After decompilation, we will be
able to get the manifest file, smali files (baksmali disassembler is used on dex file to
obtain smali files) consisting of dalvik opcodes, the methods and classes used for the
development of the application from the dex file.

After decompilation, we extract static information such as intents from the manifest
file, API calls , permissions using the androguard tool and smali files for opcodes using
apktool.

• Permissions: Applications use permissions in order to access the system resources.
• Intents: Intents are messaging objects that transfer data from one activity to an-

other.
• APIs: APIs are the libraries and methods present inside the source code of an APK

file.

Nivedha K et al. / Deep Learning Based Static Analysis of Malwares in Android Applications 135



• Opcodes: The Opcodes are instructions that an application executes.

We convert the information to features after static information is extracted. Once the
features are extracted, by comparing the dataset, we select the important features from
them. The Table 1 and 2 consist of feature set and number of features for building the
first model and second model.

Table 1. Feature set for model building the first model

Feature Set Number of Features

Permissions 113

Intents 23

API calls 71

Table 2. Feature set for model building the second model

Feature Set Number of Features

3 gram opcodes 343

4. Methodology

4.1. First Model

Drebin dataset [12] was used for this model. It consists of 9476 benign applications
and 5560 malware applications. It consists of 215 features. 5 malware apps had null
values in some columns so those 5 apps were removed and 5555 malware applications.
6 commands feature was removed from the dataset because it was difficult to extract
the commands using androguard. Some of the APIs in the dataset contains classname
and method name so the classname is removed and the method name alone is taken as
a feature. 2 API features HttpPost.init and HttpGet.init were removed because both of
them have the same method name so if class name is removed there will be two features
with the same name. Finally a total of 208 features was used for training the model.

Using the androguard tool, we decompile a given apk file and extract all the permis-
sions present in the apk file using a method in androguard and take only the important
permission keywords. Then we extract all the classes in the apk file, take only the rele-
vant keywords, and API calls are classes in androguard that are marked as EXTERNAL,
so we only take the classes marked as EXTERNAL. Next, using the Androguard tool, we
get all the methods present in the APK file. We then read the contents of the manifest file
using androguard and extract only the strings that are present within double quotes using
regex. After that, using the intent keyword, we extract only the intents present from those
values. Lastly, we select only a few of them from all the extracted features by comparing
the dataset. Then we give the feature set to the deep learning model for prediction.

The model is trained using the Deep Neural Network algorithm (DNN). The model
consists of an input layer with 207 neurons, one hidden layer with 100 neurons with
ReLU activation function. As it is a binary classification, the output layer consists of one
neuron and it uses the sigmoid activation function. The model is tested with 20 percent
of the dataset split before the training of model.

Nivedha K et al. / Deep Learning Based Static Analysis of Malwares in Android Applications136



Algorithm 1 Feature Extraction (First Model)

1: Decompile the given apk using the androguard tool.
2: Extract the permissions using androguard.
3: Remove ”android.permission.” string from all permissions and store it (Permissions).
4: Extract all the classes using androguard.
5: Split the classes using the separator and store only those classes that are marked as

EXTERNAL (APIs)
6: Extract all the methods using androguard (APIs)
7: Get the contents of the manifest file using androguard
8: Using regex get only the strings that are present inside double quotes
9: Store all the strings that has ”intent.action” string in it (Intents)

4.2. Second Model

A 3gram opcode dataset downloaded from [13] was used for this model. It consists of
data for 334 applications out of which 180 applications are malware and 154 applications
are benign. All the 343 features are used for training the model.

Apktool is used for decompiling the apk file. After decompilation, we will get a
classes.dex file so when we read a particular method in that dex file the opcodes will be
in hexadecimal sequences, so in order to convert them into human readble form apktool
uses a disassembler called baksmali which further decompiles classes.dex into several
smali files. We read all the files inside the smali folder and store them word by word in
an array. Then we read the opcode sequences that are present inside methods. A method
starts with a ”.method” opcode and ends with ”end” opcode. Since each opcode have
multiple versions we group them together and denote using a single character. Select
only the 3gram opcode sequences that are present inside the methods.

Algorithm 2 Feature Extraction (Second Model)

1: Decompile the given apk using the androguard tool.
2: Read all the smali files line by line inside the smali folder.
3: Split the line based on blank space and store all the opcodes in an array
4: Read the opcode sequences present in between ”.method” and ”end” opcode.
5: if opcode is a move instruction then

6: denote them as ”M”,
7: goto instruction as ”G”,
8: if condition instruction as ”I”, getter instruction as ”T”, setter instruction as ”S” and

method then

9: invoke instruction as ”V”, else ignore the opcode and read the next one.
10: Store the opcode sequence only if the length is 3.

The model is trained using the Deep Neural Network algorithm. The model consists
of an input layer with 343 neurons, three hidden layers, one with 300 neurons and ReLU
activation function and the other 2 hidden layers uses sigmoid activation function and
consists of 150 and 100 neurons respectively. As it is a binary classification, the output
layer consists of one neuron and it uses the sigmoid activation function. The model is
tested with different benign apps obtained from Google Play Store and malware apps
obtained from GitHub repository.

Nivedha K et al. / Deep Learning Based Static Analysis of Malwares in Android Applications 137



5. Results

In this paper, we implemented android malware detection using static analysis where we
classify any android application to be malware or benign. Deep Neural Network has been
used as the classifier in both the models The first model is trained with a training data
set that contains approximately 12,000 applications and tested with 3000 apps. The first
model was able to achieve an accuracy of 99.37 percent while tested with the 3000 appli-
cations. The second model is trained with a 3 gram opcode dataset that contains around
300 applications and tested with around 30 applications. The second model was able to
achieve an accuracy of 97 percent. But since different combination of layers and neu-
rons produced the same accuracy we evaluated the model using applications downloaded
from Google Play Store and malware apps downloaded from GitHub repository.

5.1. Performance Analysis of First Model

This section discusses about the performance metrics of the proposed first android mal-
ware detection model and states about the confusion matrix, false positives(apps that are
not malware but predicted as malware) and false negatives(apps that are not benign but
predicted as benign) are explained.

A confusion matrix is one of the important classification metric that provides sum-
mary of prediction results. For each class, the number of predictions is given along with
the correct and incorrect ones.

Con f usion =

[
1921 9
10 1067

]

False Malware - Predicted Malware but Benign = 9
False Benign - Predicted Benign but Malware = 10
True Malware - Predicted Malware and it is true = 1067
True Benign – Predicted Benign and it is true = 1921
FalsePositiveRate(FPR) = FalseMalware

FalseMalware+Truebenign = 0.0047

FalseNegativeRate(FNR) = FalseBenign
FalseBenign+TrueMalware = 0.0093

Accuracy= TrueMalware+TrueBenign
Totalno.O f f setsamples = 0.9937

Precision= TrueMalware
TrueMalware+FalseMalware = 0.9937

Recall= TrueMalware
TrueMalware+FalseBenign = 0.9937

F1 Score= 2∗(Precision∗Recall)
Pecision+Recall = 0.9912

By using the machine learning classifiers, we classify any android application to
be benign or malware. With the help of confusion matrix we can predict false malware,
true malware, false benign and true benign. According to this classification metrics like
False Positive Rate (FPR), False Negative Rate (FNR), Accuracy, Precision, Recall and
F1 Score has been calculated and compared with the proposed and existing machine
learning classifiers. The proposed DL classifiers has better results when compared with
existing classifies and is shown in Table 3.

Nivedha K et al. / Deep Learning Based Static Analysis of Malwares in Android Applications138



Table 3. Comparison of DL classifier Vs other machine learning classifiers

ML classifiers / Metrics FPR FNR Accuracy Precision Recall F1

Logistic Regression 0.0109 0.0418 0.9781 0.9781 0.9582 0.9690

Decision Tree 0.0238 0.0251 0.9757 0.9757 0.9749 0.9664

Naive Bayes 0.4285 0.0186 0.7183 0.7183 0.9814 0.7139

Random Forest 0.0036 0.0176 0.9914 0.9914 0.9824 0.9879

SVM 0.0095 0.0321 0.9820 0.9820 0.9679 0.9757

DL Classifier (proposed model) 0.0047 0.0093 0.9937 0.9937 0.9907 0.9912

Table 4. Deep learning results with different combinations of hidden layers

No of layers No of neurons FPR FNR Accuracy Precision Recall F1

1 50 0.0067 0.0121 0.9914 0.9914 0.9879 0.9879

1 100 0.0047 0.0093 0.9937 0.9937 0.9907 0.9912

1 150 0.0067 0.0121 0.9914 0.9914 0.9879 0.9879

1 200 0.0047 0.0139 0.9920 0.9920 0.9861 0.9888

2 100,50 0.0052 0.0111 0.9927 0.9927 0.9889 0.9898

2 100,100 0.0062 0.0149 0.9907 0.9907 0.9851 0.9870

2 200,50 0.0057 0.0102 0.9927 0.9927 0.9898 0.9898

2 200,100 0.0073 0.0121 0.9910 0.9910 0.9879 0.9875

2 200,200 0.0057 0.0139 0.9914 0.9914 0.9861 0.9879

3 100,100,50 0.0031 0.0204 0.9907 0.9907 0.9796 0.9869

3 100,100,100 0.0062 0.0176 0.9897 0.9897 0.9824 0.9856

3 200,100,100 0.0041 0.0186 0.9907 0.9907 0.9814 0.9869

3 200,200,200 0.0052 0.0111 0.9927 0.9927 0.9889 0.9898

The proposed model DL classifier is evaluated with different combination of layers
and neurons using classification metrics FPR, FNR, Accuracy, recall and F1. Layer is
the collection of nodes operating within a neural network. Input layer has raw data. The
hidden layer in which computation is done and in output layer will have single output
with multiple nodes in it. By adding more hidden layer or more neurons per layer will
add more parameter to the model. In Table 4 number of neuron is increased in each layer
and it is evaluated using classification metrics to know the efficiency of the proposed
model.

In order to highlight the significance of the results, we compared the proposed work
with other static analysis based works using the classification metrics accuracy, precision,
recall and f1 score. [14] used a total of 179 static features with mixed feature set and
was able to achieve an accuracy of 97.5%. [15] also uses a mixed feature set along with
certificate verification and was able to achieve an accuracy of 95.31%. [16] used all the
samples in Android malware genome project and was able to achieve an accuracy of
99.3% by introducing the principle of similarity to Gated Recurrent Unit. The proposed
model uses DNN algorithm with total of static features Intent, API calls and permission
was able to achieve an accuracy of 99.37% which is way better than other existing works
and is shown in Table 5.

Nivedha K et al. / Deep Learning Based Static Analysis of Malwares in Android Applications 139



Table 5. Comparison of the proposed model with existing works

Related work No of Malware/

Benign samples

Accuracy Precision Recall F1

Ensemble learning [14] 2925/3938 0.9750 - 0.9730 -

DNN [15] 600/600 0.9531 0.9535 0.9531 0.9531

GRU [16] 5560/123453 0.9930 0.9879 0.9950 0.9912

DL Classifier (proposed model) 5560/9476 0.9937 0.9937 0.9907 0.9912

5.2. Performance Analysis of Second Model

The model using the static feature Dalvik Opcodes is tested with 40 applications ob-
tained from Google Play Store and 60 applications obtained from GitHub repository.
This model scrutinize the downloaded application and predicts each application whether
it is benign or malware and the predictions are shown in Table 6.

Table 6. Evaluation of Models

Number of layers Number of neurons Benign Prediction Malware Prediction

1 100 26/40 57/60

1 200 33/40 57/60

1 300 26/40 59/60

2 200,150 27/40 60/60

2 300,150 25/40 59/60

3 200,150,100 0/40 60/60

3 300,150,100 31/40 59/60

6. Conclusion and future work

The aim is to identify malicious functions present in an apk file of an android application
and classify them as benign or malware. Two different static analysis models was trained
to accomplish this task. One model classifies applications using the static features intents,
API calls and permissions and the other model classifies applications using the static
feature Dalvik opcodes. The future work of this paper include classifying android appli-
cations using dynamic analysis. We run the application in an emulator and classify the
applications based on its behaviour. After that we will combine both static and dynamic
analysis which further improves the detection accuracy. Then we will build an android
application that allows the user to scan any specific application for malware by moving
the apk file of the chosen application from the mobile to the system and then sending
the results back to the mobile after classification. In future we will manually prepare the
dataset for static analysis by installing different benign and malware applications and
extracting the static features to boost the accuracy of the existing system.

References

[1] Alzaylaee MK, Yerima SY, Sezer S. DL-Droid: Deep learning based android malware detection using
real devices. Computers & Security. 2020 Feb 1;89:1-25.

Nivedha K et al. / Deep Learning Based Static Analysis of Malwares in Android Applications140



[2] Hota A, Irolla P. Deep Neural Networks for Android Malware Detection. InICISSP 2019 (pp. 657-663).
[3] Naway A, Li Y. Android malware detection using autoencoder. International Journal of Computer Engi-

neering and Applications. 2019 Jan;12:1-9.
[4] Lubuva H, Huang Q, Msonde GC. A review of static malware detection for Android apps permis-

sion based on deep learning. International Journal of Computer Networks and Applications. 2019
Sep;6(5):80-91.

[5] Pan Y, Ge X, Fang C, Fan Y. A systematic literature review of android malware detection using static
analysis. IEEE Access. 2020 Jun 16;8:116363-79.

[6] Chen T, Mao Q, Yang Y, Lv M, Zhu J. TinyDroid: a lightweight and efficient model for Android malware
detection and classification. Mobile information systems. 2018 Oct 17;2018.

[7] SaiRamesh L, Ashok E, Sabena S, Ayyasamy A. Credit Card Fraud Detectıon in Retaıl Shopping Us-
ing Reinforcement Learning. InInternational Conference On Computational Vision and Bio Inspired
Computing 2018 Nov 29 (pp. 1541-1549). Springer, Cham.

[8] Kang H, Jang JW, Mohaisen A, Kim HK. Detecting and classifying android malware using static anal-
ysis along with creator information. International Journal of Distributed Sensor Networks. 2015 Jun
3;11(6):1-9.

[9] Kang B, Yerima SY, Sezer S, McLaughlin K. N-gram opcode analysis for android malware detection.
International Journal on cyber situational Awareness. 2016 Dec 5;1:231-55.

[10] Sandeep HR. Static analysis of android malware detection using deep learning. In 2019 International
Conference on Intelligent Computing and Control Systems (ICCS) 2019 May 15 (pp. 841-845). IEEE.

[11] Sirisha P, Anuradha T. Detection of Permission Driven Malware in Android Using Deep Learning Tech-
niques. In2019 3rd International conference on Electronics, Communication and Aerospace Technology
(ICECA) 2019 Jun 12 (pp. 941-945). IEEE.

[12] Derbin [Internet]. [cited 2020 Oct 23]. Available from: https://www.sec.cs.tu-bs.de/danarp/derbin/
[13] Android malicious code detection based on machine learning, n-gram opcode + RandomForest [Inter-

net]. Available from: https://github.com/kassadinsw/AndroidMalware-ngram-RF
[14] Yerima SY, Sezer S, Muttik I. High accuracy android malware detection using ensemble learning. IET

Information Security. 2015 Oct 12;9(6):313-20.
[15] Naway A, Li Y. Using deep neural network for Android malware detection. International Journal of

advanced studies in Computer Science and Engineering (IJASCSE). 2019 Jan 16;7(12):1-9.
[16] Zhou H, Yang X, Pan H, Guo W. An Android Malware Detection Approach Based on SIMGRU. IEEE

Access. 2020 Jul 29;8:148404-10.

Nivedha K et al. / Deep Learning Based Static Analysis of Malwares in Android Applications 141


