

Parallelizing Bidirectional A* Algorithm

Sumit Sharma a , Shashwat Srijan b , and Vidhya J V b

a,b Dept of CSE, SRM Institute of Science and Technology, Chennai

 Abstract. Dijkstra’s algorithm is one of the simplest shortest path finding algorithm. A

star(A*) algorithm is a variation of the shortest path first Dijkstra’s algorithm and is

very commonly used in games using heuristics. The idea behind A* is to assign weight

to each open node and then use a heuristic to calculate the cost from start to finish. A*

uses heuristics and cost functions to find the most appropriate path in games and

robotics. Games are needed to be fast and so we can have tradeoffs between speed and

accuracy. So instead of accuracy we focus more on speed which is not needed in some

of the situations like autonomous vehicles and simulation games. So, the A* algorithm

may underestimate the costs but will never overestimate it. Bidirectional A*reduces the

computation by calculating the shortest path from the source as well as the destination.

A solution may be the General-Purpose Graphics Processing Units. It can be used to

enhance the processing and execution speed of Bidirectional A* algorithm by using

parallel processing and multiple threads. GPU based path finding may be approximately

45 times as fast as CPU pathfinding mechanism.

Keywords. Bidirectional A*; Parallel; Multiprocessing; GPU

1. Introduction

Game Theory is an important aspect of modern-day universe and computer systems. A

major aspect of Artificial Intelligence implemented in games are the pathfinding

algorithms. One of the major algorithms used for pathfinding are the A* algorithms.

A* is one of the most important and essential algorithms for various pathfinding

techniques. A* allows us to implement the pathfinding by identifying the location of

the source nodes and the destination nodes and the calculating the heuristic function.

Then the node with the maximum value of the heuristic function called as the f-cost is

selected and its neighbors are expanded. For each node we identify the neighboring

nodes and store them in an open array. Once the F-cost heuristic is calculated for all

these nodes we identify the node with the minimum value as this represents the node

that is closer to the destination. Now this node is stored in another list so that we can

backtrack to this node while identifying the necessary path. The above specified

algorithm is repeated for every selected node again and again till we reach a node

whose neighboring node is the destination node. Once such a node is found the

algorithm stops computing the heuristic function and backtracks to all the nodes which

form the path thereby resulting in the shortest path from the source to the destination.

The given system only implements Dijkstra’s Algorithm using parallel processing and

1 Sumit Sharma, Computer Science and Engineering, SRM Institute of Science and Technolog, Chennai;

 Email: sumitsh6917@gmail.com

Intelligent Systems and Computer Technology
D.J. Hemanth et al. (Eds.)

© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200202

558

the Bidirectional A* Search is much faster and efficient in a variety of scenarios as

opposed to the simple Dijkstra’s algorithm. The major trade-off between the proposed

system and the existing system is that in some scenarios the proposed Bi- directional

A* search may not be up to the mark as calculations may be excessive. The

Bidirectional Search may fail while using Road Maps instead of Grid based systems

as road maps do not allow multiple simultaneous executions for the same road point.

Also, the transmission time between the GPU and the system memory is much larger

than that of the system and the CPU so at times the overhead may slow down the

algorithm by large amount if the grid size is extremely large. An important technique

which can be used to provide such a parallelizing mechanism is given by Yuichai Zhu

and his peer Jin Yang Zen in their paper titled “Massively Parallel A* search on

GPU”. They describe the use of priority queues to divide the algorithm into smaller

parts and sending each part as a unit to the GPU simultaneously for executions.

Similarly in bidirectional A* each calculation for heuristic on the source and

destination node can be send as a new thread to the GPU for calculations and the

result and the required path can then be obtained after the information has been

transmitted back to the CPU by the GPU.

2. Related Work

From the literary survey we can observe that several tasks can easily be conducted

with the help of Pathfinding algorithms. Path Finding algorithms though may be

majorly used in the games industry for finding the shortest path between the source

and the destination. Presently the systems which are available are majorly Serially

executed pathfinding algorithms and most of the indie game developers use the serial

implementations of pathfinding algorithms. The major advancements in the modern

times to pathfinding were done by Yichao Zhu and his peer Jianyang Zen by

implementing the Dijkstra’s algorithm in the GPU thereby reducing the time taken to

find the shortest path between the source and the destination. The given system only

implements Dijkstra’s Algorithm using parallel processing and the Bidirectional A*

Search is much faster and efficient in a variety of scenarios as opposed to the simple

Dijkstra’s algorithm. Dijkstra’s search all the possible nodes starting from the source

going to the destination and displaying a path if it is available. Bidirectional A* on

the other hand starts from the source to the destination and can be broken down into

smaller threads which can be implemented simultaneously from both sides to find the

shortest path.

3. Proposed Work

In real applications the serialized approach might not always work and we might need

faster implementations of the A* algorithm. Also, there might be scenarios like a huge

grid where the A* algorithm might simply just fail. So, to avoid such a scenario we

can make use of General-Purpose Graphics Processing Unit to make all the

calculations accurate as well as faster. Another important thing which the system

proposes is that instead of implementing the simple A* algorithm the bidirectional

Sumit Sharma et al. / Parallelizing Bidirectional A* Algorithm 559

version of the A* algorithm will be implemented. This means that the heuristic

function will be simultaneously applied to the source as well as the destination node

simultaneously. The basic F-cost heuristic thus is applied at the source and the

destination and a set of neighbour nodes are identified from both the source and the

destination. At some point the two set of neighbouring nodes will meet and then we

can backtrack using the set of selected nodes to identify all the selected paths and give

the appropriate path used as required. Now, since the bidirectional A* will be

implemented on the GPGPU so there is also a need to parallelize the algorithm. Since

a GPU consists of a large number of cores that can simultaneously execute a large

number of threads so we need to break the bidirectional A* into simpler terms.

The Major benefits of the proposed system will be the improved performance of the

system while dealing with pathfinding algorithms on large grid-based scenarios as

calculations will be executed in a faster manner. Also as opposed to the Dijkstra’s

algorithm less space will be used up as the system will only search the nodes which

have a lesser heuristic value rather than searching the entire list of neighbor nodes.

Since heuristic calculations are generally quite exhaustive for the CPU the GPU being

functionally better at calculating can easily calculate the heuristics which can be used

for searching the nodes. Since the CPU will be available as most of the pathfinding

will now be done on the GPU, the CPU will now be available to carry out other

important tasks including other calculations and storage operations as and when

required without using up resources for pathfinding calculations.

3.1 Equations

For each node the bidirectional A* algorithm calculates the cost f(n) which tells us

abut the lowest cost to travel to the nearest neighbor and the node having the overall

lowest f cost is selected.

f(n) = g(n) + h(n) where,

g(n) —is the cost of path from start node to current node

h(n) —the estimated heuristic value from current node to the end node

f(n) — the lowest cost neighbor

 Manhattan Distance:

int dx1= (int)Math.Abs((current.xIndex) - (goal.xIndex));

int dy1=(int)Math.Abs((current.yIndex) - (goal.yIndex));

if (dx1 > dy1)

 return 14*dy1 + 10*(dx1-dy1);

 else

 return 14*dx1 + 10*(dy1-dx1);

3.2 Map Representation

World representation in computer games is generally done with the help of grids. We

consider the map as a square grid where square represents a coordinate. Map has

walkable and non-walkable tiles; the obstacles are represented as non-walkable tiles.

The obstacles are unwalkable and the algorithm executes and calculates values for

walkable tiles.

Sumit Sharma et al. / Parallelizing Bidirectional A* Algorithm560

Figure 1: A* algorithm search area in light blue.

3.3 Algorithm used

1. Set static finished = true

2. Initialise a Variable L

3. Initialise a List to store thread Ids

4. Set the start node and the goal Node

5. Initialise Create_NewThread()

6. Thread_priority = 1

7. Initialise Calc_Heurestic()

8. if (current node is checked by thread) then

if(current.fScores[id]<(int)L&& current.gScores[id]+brotherThread.F

- brotherThread.Heuristic_cost_estimate(start, current) < (int)L)

9. Search for least cost neighbour

10. Lock the thread for synchronization

11. if selected node executed by brother node

 then stop execution

12. Retrace Path

Graph 1: performance of gpu running cuda A* search using euclidean heurestic compared to cpu

simple c++ code

4. Results Discussion

We worked on the implementation of bidirectional A star search on GPU.

5. Conclusion

The A star search method has become prominent in games for discovering shortest

distance between any two nodes. The modern day games have several number of

Sumit Sharma et al. / Parallelizing Bidirectional A* Algorithm 561

agents that tend to move at an identical time in the existence of obstacles. So, it is now

very significant to find shortest paths concurrently and in a speedy way. Utilizing

GPU’s extremely parallel multi-threaded behavior goes with this scenario perfectly.

Hence, we have implemented bidirectional A star system in parallel fashion thereby

breaking the algorithm and reengineering to make execute it parallelly.

 The proposed system will make use of a modified algorithm for A * search and

will make use of priority queues to break down the algorithm in its serial form and

then using the GPU calculation capabilities to calculate the heuristic function and

using it to identify the actual path.

References

[1] Y. Sazaki, H. Satria and M. Syahroyni, "Comparison of A∗ and dynamic pathfinding algorithm with

dynamic pathfinding algorithm for NPC on car racing game," 2017 11th International Conference on
Telecommunication Systems Services and Applications (TSSA), Lombok, 2017, pp. 1-6.

[2] A. Silva, F. Rocha, A. Santos, G. Ramalho and V. Teichrieb, "GPU Pathfinding Optimization," 2011
Brazilian Symposium on Games and Digital Entertainment, Salvador, 2011, pp. 158-163.

[3] A. Primanita, R. Effendi and W. Hidayat, "Comparison of A∗ and Iterative Deepening A∗ algorithms
for non-player character in Role Playing Game," 2017 International Conference on Electrical
Engineering and Computer Science (ICECOS), Palembang, 2017, pp. 202-205.

[4] Yoon, Jaeshik, Jaehan Park, and Moonhong Baeg. "GPU-based collision detection for sampling-based
motion planning." In 2013 10th International Conference on Ubiquitous Robots and Ambient
Intelligence (URAI), pp. 215-218. IEEE, 2013.

[5] An, Xiaoguang, and Ling Li. "Research on Fast Collision Detection Algorithm Based on CPU Cache
Technology." In 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS),
pp. 219-222. IEEE, 2018.

[6] Yngvi Bjornsson and Kari Halldorsson,” Improved Heuristics for Optimal Pathfinding on Game Maps,
"in American Association for Artificial Intelligence,2006

[7] Zhou, Yichao, and Jianyang Zeng. "Massively parallel A* search on a GPU." In Twenty-Ninth AAAI
Conference on Artificial Intelligence. 2015.

[8] Zeyad Abd Algfoor, Mohd Shahrizal Sunar, and Hoshang Kolivand, “A Comprehensive Study on
Pathfinding Techniques for Robotics and Video Games,” International Journal of Computer Games
Technology, vol. 2015, Article ID 736138, 11 pages,2015.

[9] Treuille, Adrien, Seth Cooper, and Zoran Popović. "Continuum crowds." In ACM Transactions on
Graphics (TOG), vol. 25, no. 3, pp. 1160-1168. ACM, 2006.

[10] R. Mangharam and A. A. Saba, "Anytime Algorithms for GPU Architectures," 2011 IEEE 32nd Real-
Time Systems Symposium, Vienna, 2011, pp. 47-56.doi: 10.1109/RTSS.2011.41

Sumit Sharma et al. / Parallelizing Bidirectional A* Algorithm562

