
Toward Enabling Reproducibility for
Data-Intensive Research sing the Whole

Tale Platform

Kyle CHARD a , Niall GAFFNEY b , Mihael HATEGAN a , Kacper KOWALIK c ,
Bertram LUDÄSCHER d , Timothy MCPHILLIPS d , Jarek NABRZYSKI e ,

Victoria STODDEN d,1, Ian TAYLOR e , Thomas THELEN f , Matthew J. TURK d and
Craig WILLIS c

a University of Chicago
b Texas Advanced Computing Center

c National Center for Supercomputing Applications
d University of Illinois at Urbana-Champaign

e University of Notre Dame
f University of California at Santa Barbara

Abstract.

Whole Tale http://wholetale.org is a web-based, open-source platform for
reproducible research supporting the creation, sharing, execution, and verification
of “Tales” for the scientific research community. Tales are executable research ob-
jects that capture the code, data, and environment along with narrative and work-
flow information needed to re-create computational results from scientific studies.
Creating reproducible research objects that enable reproducibility, transparency,
and re-execution for computational experiments requiring significant compute re-
sources or utilizing massive data is an especially challenging open problem. We
describe opportunities, challenges, and solutions to facilitating reproducibility for
data-and compute-intensive research, that we call “Tales at Scale,” using the Whole
Tale computing platform. We highlight challenges and solutions in frontend respon-
siveness needs, gaps in current middleware design and implementation, network re-
strictions, containerization, and data access. Finally, we discuss challenges in pack-
aging computational experiment implementations for portable data-intensive Tales
and outline future work.

Keywords. reproducible research, scalability, science as a service, platform
as a service, scientific computing, computational science, scientific workflows,
replicability, reproducibility, big data, data provenance, cyberinfrastructure, transparency

1. Introduction

In this work we explore barriers and opportunities for extending the Whole Tale in-
frastructure [1] to facilitate reproducible data-intensive research at scale. Creating re-

1Corresponding Author. E-mail: vcs@stodden.net. This material is based upon work supported by the
National Science Foundation under Grant No. 1541450.

U

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)

© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200107

766



producible research objects that capture artifacts such as data, software, and sufficient
details from a computational experiment to enable reproducibility, transparency, and
re-execution is a challenge the research community is addressing in a variety of ways
[2,3,4,5,6,7,8,9,10]. However reproducing results that require significant compute re-
sources, rely on specialized hardware, or utilize massive data, is an especially challeng-
ing open problem. We start by describing the Renaissance Simulations [11] to provide a
concrete motivating scenario for this work. We then present the current implementation
of the Whole Tale reproducible research platform, and define the notion of a “Tale” as a
reproducible research object published by the Whole Tale system [12,13]. We enumerate
possible execution models for data-intensive computational experiments that rely on sig-
nificant compute resources, specialized hardware, and/or massive data. We discuss chal-
lenges and solutions inherent in extending the Whole Tale platform this way, including
frontend responsiveness needs, gaps in middleware design and implementation, network
restrictions, containerization, and data access. We close with a discussion of the role of
computational reproducibility in the search for scientific correctness.

We acknowledge the following contributions to this work, following the CAS-
RAI CRediT (Contributor Roles Taxonomy) convention (see https://casrai.org/

credit/). Conceptualization: Chard, Gaffney, Hategan, Kowalik, Willis; Funding ac-
quisition: Ludäscher, Stodden, Turk, Chard, Nabrzyski, Gaffney; Project management:
Kowalik, Willis; Software: Hategan, McPhillips, Kowalik, Taylor, Thelen, Willis; Super-
vision: Chard, Gaffney, Kowalik, Ludäscher, Nabrzyski, Stodden, Turk, Willis; Visual-
ization: Hategan; Writing (original draft): Hategan, Stodden; Writing (review & editing):
Chard, Ludäscher, Hategan, Stodden, Kowalik, Willis.

2. Motivating Scenario: Renaissance Simulations Laboratory

To motivate the discussion, we describe a real-world scenario based on the Renaissance
Simulations. The Renaissance Simulations (RS) are some of the largest and most de-
tailed simulations of the formation and evolution of the first galaxies. Created after three
years using more than 100 million core hours, the resulting simulations enable the ex-
ploration of a variety of research questions concerning structure formation and chemical
evolution in the early universe. However, the complexity, depth, and size of these simu-
lations require researchers to have access to specialized resources for analysis. The Re-
naissance Simulations Laboratory (RSL) is a virtual laboratory devoted to providing ac-
cess to over 70 TB of raw data and derived data products including halo catalogs, merger
trees, and mock observations. RSL exposes data available on systems at the San Diego
Supercomputing Center (SDSC) via Jupyter web-based interactive environments and, in
a later phase of the project, enable launching jobs on SDSC Comet and other XSEDE
resources [15]. Analyses conducted via RSL are intended to be shared and published to
foster a collaborative research community in keeping with the long history of openness
and transparency of computational research artifacts in computational astronomy.

This scenario illustrates three key challenges related to our vision of “Tales at Scale,”
which we define as executable research objects that capture the code, data, and environ-
ment along with narrative and workflow information needed to re-create computational
results from data- and compute-intensive scientific studies. Creating such reproducible
research objects to enable reproducibility, transparency, and re-execution for computa-

K. Chard et al. / Toward Enabling Reproducibility for Data-Intensive Research 767



tional experiments requiring significant compute resources or utilizing massive data is
an especially challenging open problem. We describe opportunities, challenges, and so-
lutions to facilitating reproducibility for data-and compute-intensive research using the
Whole Tale computing platform. First, the RS data are very large, impractical to transfer,
and requires large-scale resources to analyze. Second, the research community leverages
interactive Jupyter environments for both exploratory and primary analytical work with
some analysis requiring batch compute resources. Third, the community is interested in
sharing resulting research artifacts (e.g. code, derived data) for both re-execution and
re-use. There are many research communities that would benefit from general-purpose
infrastructure, like RSL, that enables researchers to 1) perform exploratory work via
large-scale interactive environments, 2) publish reproducible research artifacts based on
experiments that require HPC workloads, and 3) do both in an environment that does not
require transferring data to new systems. RSL and the Whole Tale project share com-
mon platform components and Whole Tale is using the RSL as a driver for the design
and implementation of solutions to common problems of computational reproducibility
at scale.

3. The Whole Tale Project: Goals, Infrastructure, and Tales

In related work we have presented the Whole Tale project: a web-based and open source
cyberinfrastructure platform that enables the generation and publishing of reproducible
research artifacts, which we call “Tales,” objects encapsulating code, data, and computa-
tional environment information [12,13]. The goal of the Whole Tale project is to enable
reproducibility for computation- and data-enabled research. The approach is to trans-
form the discovery process by uniting data products, computational pipelines, and re-
search articles into an integrated whole. Whole Tale supports research experiments in
situ, through popular analysis environments such as Jupyter and RStudio interfaces, and
captures information including the code, data, provenance, and execution environment
used to produce research findings. This information is then packaged by Whole Tale into
an archival format called a Tale which defines a standard for executable and reproducible
research objects [14]. The Tale stores explicit references to data and code used in compu-
tational experiments, both for reproducibility purposes and to permit the citation of the
specific versions used in any subsequent research. A Tale can be submitted or published
to an external research repository and assigned a persistent identifier by the repository.
The Whole Tale platform allows users to interactively create and edit Tales and to re-run
a Tale to reproduce and verify results as obtained by the original Tale creator.

The Whole Tale platform itself consists of a set of services, collectively termed the
Whole Tale Services, which serve the main web interface and implement the backend
services needed to support the functionality of the web interface. Whole Tale is devel-
oped as an open source project and can be deployed by third parties. The Whole Tale Ser-
vices at https:\\wholetale.orgare currently deployed on persistent resources that
take the form of a number of virtual machines supporting the underlying databases, ser-
vice containers, and other components. Currently, research in the Whole Tale environ-
ment is supported by a Docker swarm cluster on Jetstream virtual machines [16,17], re-
ferred to at the “Whole Tale cluster.” The Whole Tale Services are responsible for launch-
ing and managing Tales. Tale “Frontends,” such as a Jupyter or RStudio notebook, run

K. Chard et al. / Toward Enabling Reproducibility for Data-Intensive Research768



on Tale Frontend Resources, which may be co-located with Whole Tale resources. Tales
that require heavy computational or data resources, the focus of this article, are consid-
ered to contain HPC Workloads, which typically consists of CPU-intensive serial or par-
allel (e.g., MPI) code, or code meant to be run on GPU hardware. The lifecycle man-
agement of Tale frontends and eventually High Performance Computing (HPC) work-
loads is handled by specialized middleware, discussed from the perspective of “Tales at
Scale” will be presented in Section 5.2. The Whole Tale platform today focuses on in-
teractive environments as Tale Frontends for both exploratory work and re-execution of
published artifacts. Through this, system users are able to work in environments that they
are comfortable with while gaining the benefits of the Whole Tale platform to package
the results of their work. These interactive environments also provide the opportunity to
instrument parts of the research process, such as software dependency identification and
computational provenance. As discussed below, the focus on interactivity can be at odds
with support for HPC resources where the primary interactive environment is typically a
secure shell such as SSH.

4. Possible Execution Models Allowing Access to External Resources

A visual representation of the conceptual architecture described in the previous section is
shown in Figure 1. In the current Whole Tale implementation, the three types of resources
shown in Figure 1 are only logically distinct and currently consist of Docker containers.
The middleware connecting the core services with the Tale frontends is a wrapper around
Docker API calls. Tales, in turn, can launch applications that are pre-built into the Tale
images using standard system calls, thereby running them inside the same container as
the Tale. However, CPU-intensive applications are, in principle, still limited to being run
inside the Tale containers. This limitation can be worked around by connecting to exter-
nal resources and launch custom HPC workloads. Such a solution, however, hinders the
ability of a Tale to capture the entirety of the environment in which it was created, neg-
atively impacting reproducibility. This issue will be discussed in more detail in Section
5.

The architecture presented in the previous section is general in that it does not spec-
ify the precise meaning of the resources involved. The Whole Tale platform only dictates
that the core services be deployed on some persistent resources. We can distinguish a
number of models that refine this general architecture by assigning concrete resources to
the logical ones, enumerated below. We briefly list some of their benefits and downsides,
with a more detailed analysis following in Section 5. We discuss six possible approaches
in turn.

The first model deploys the Tale frontend and HPC workloads on the Whole Tale
cluster (Figure 2). The frontend runs on resources that are part of the Whole Tale deploy-
ment and users can launch local HPC jobs using standard system calls, jobs which would
run inside the same container as the Tale. The resources available for the HPC jobs are
limited to what is provided by default through the Whole Tale deployment cluster.

The second possible model deploys the Tale frontend on an HPC compute node
(Figure 3). This option involves running the Tale frontend e.g. a Jupyter notebook or
R-studio IDE, on compute nodes in an HPC cluster. The notebooks would then be able
to launch independent HPC jobs using standard system calls. As in the previous model,

K. Chard et al. / Toward Enabling Reproducibility for Data-Intensive Research 769



Figure 1. Conceptual high level Whole Tale architecture for executing Tales on HPC resources.

Figure 2. Tale Frontend on Whole Tale Deployment Cluster. The middleware used by the core Whole Tale
services to manage Tales is named “gwvolman.”

Figure 3. Tale Frontend on single HPC Compute Node.

HPC jobs would be local to Tale frontends, but can now benefit from the HPC hardware
on which the frontends run.

Our third model deploys the Tale frontend on an HPC compute node with local LRM
(cluster queuing system) access (Figure 4). This is a similar scenario to that shown in
Figure 3, but would allow submission of HPC jobs to the queuing system of the cluster.
This would enable scaling of the HPC jobs beyond what is provided by the compute
resources available to the Tale frontend.

We can extend the third model to deploy the Tale frontend on HPC compute nodes

K. Chard et al. / Toward Enabling Reproducibility for Data-Intensive Research770



Figure 4. Tale Frontend on HPC Compute Node with Local LRM (cluster queuing system) Access.

Figure 5. Tale Frontend on HPC Compute Nodes with MPI.

Figure 6. Tale Frontend on Whole Tale Cluster with Remote LRM Access.

with MPI (Figure 5). This involves launching the Tale frontend as an MPI job. The cluster
LRM (queuing system) would allocate the number of nodes requested at the submission
of the Tale frontend job and set the appropriate MPI environment. The Tale frontend
would run on the lead node allocated to the MPI job by the LRM and would be able to,
using “mpirun” or other cluster specific tools, launch MPI subjobs on the nodes allocated
to the MPI job.

Our penutimate model deploys the Tale frontend on the Whole Tale cluster with
remote LRM access (Figure 6). In this scenario, Tale frontends continue to run alongside
Whole Tale core services, but HPC jobs can be submitted to remote clusters via the
middleware.

The final model is a decoupled Tale frontend with LRM Remote Access. In this
model, Tale frontends are allowed to run on various resources, including the Whole Tale
cluster, a cloud provider, or an HPC cluster. HPC jobs, in turn, can run on any resources
supported by the middleware. This model would be useful in allowing users to bypass
the limitations present in the default resources provided by the Whole Tale infrastructure.
A user with cloud access could request that a Tale be run on cloud resources under the
user’s account. Furthermore, users with access to HPC clusters could schedule HPC jobs
on those resources.

K. Chard et al. / Toward Enabling Reproducibility for Data-Intensive Research 771



5. Infrastructure Challenges for Implementing “Tales at Scale” on Whole Tale

In this section we consider challenges to consider when implementing the “Tales at
Scale,” model including frontend responsiveness, HPC network restrictions, and con-
tainerization.

5.1. Maintaining Responsiveness of Tale Frontends

From a usability perspective, Tale frontends need to be launched relatively quickly and
predictably. When running Tale frontends on the Whole Tale cluster, Tale frontends be-
come available in a matter of seconds. The process of building the Tale image and launch-
ing the container is not instant, but roughly equal to the amount of time it takes docker
to load the Tale image from a local registry. However, if the Tale frontend is launched
on a typical HPC resource, the process involves the additional step of submitting a job
to the LRM and waiting for the LRM to schedule the job on compute nodes. The na-
ture of HPC workloads (often long-running processes) means that LRMs are rarely opti-
mized for quickly scheduling jobs. In addition, the scheduling time is also affected by the
number and size of jobs belonging to other users that are already queued by the LRMs.
HPC resources may also cycle through scheduled maintenance making them intermit-
tently unavailable. These factors can make the Tale launching time on HPC resources
unpredictable, and measured very rarely in seconds.

Strategies to mitigate Frontend launch responsiveness include advanced reservations
and pilot jobs. Advanced reservations must be negotiated with HPC resource owners
ahead of time. While it may be possible to negotiate long term advanced reservations,
this cannot usually be done in an automatic fashion and is repeated whenever a new HPC
resource is used. By contrast, an approach based on pilot jobs would involve maintaining
a dynamic pool of placeholder HPC workloads that are already scheduled on HPC re-
sources and can pick up actual HPC workloads instantly. From the responsiveness stand-
point, solutions which place Tale frontends on the Whole Tale cluster are, therefore, pre-
ferred.

5.2. Scalability and Longevity of Middleware

Middleware that supports the “Tales at Scale” idea described in this article will allow the
Whole Tale core services to launch Tales, and users to launch HPC jobs from Tales. Some
examples of middleware include the Globus Toolkit [18], “Simple API for Grid Appli-
cations” (SAGA) [19], DRMAA (see Global Grid Forum http://www.gridforum.

org/), and Agave (see The Agave Platform http://developer.agaveapi.co/).
Most current middleware provides some level of abstraction over individual HPC re-
sources. That is, to the programmer using the middleware, different resources are ex-
posed through a unified API which abstracts away details such as the type of LRM that
a specific HPC resource employs. The nature of the application using the middleware as
well as the HPC resources will impose certain constraints on middleware implementa-
tion. There are two important issues to consider in our Tales at Scale case: middleware
scalability and longevity.

A problem arises from the fact that scalability may not have been explicitly consid-
ered as an integral part of remote HPC submission library design. Such libraries may be

K. Chard et al. / Toward Enabling Reproducibility for Data-Intensive Research772



designed and tested with the idea of a user submitting and monitoring a relatively low
number of jobs at a time. When used by a high throughput system however, such as a
portal or a workflow system, problems can arise. For example middleware that wraps
LRM command line tools to monitor jobs, such as “qstat,” may only periodically do so,
even when an invocation occurs for every job handled by the middleware, if the number
of jobs is small. When the number of jobs is large however, the repeated invocation of
“qstat” can overwhelm the LRM.

An additional issue preventing middleware from scaling is the management of se-
cure connections. Establishing secure network connections requires a number of cryp-
tographic steps which tend to be CPU-bound. If each job operation (submission, status
query) requires the establishment of a secure connection and many such operators are
performed on a single CPU, such as a single middleware client used by a portal or a
service deployed on an HPC resource, the rate at which the operations can be performed
can be limited. Addressing this issue requires aggregating operations under connections
that are kept alive for some time. This is only useful however if the same middleware
client/service instance are used. Associating a different client with each Tale instance can
potentially reduce the benefits that would come from the sharing of secure connections,
but may be necessary for different authentication credentials.

Finally, the lifetime of a remote job as seen from the client side is fundamentally
asynchronous. The process involves doing some work until the job information is trans-
mitted to the remote side, followed by waiting until the job completes or fails. It is con-
venient in many cases to treat such remote jobs as a synchronous process since it leads
to simpler code. However, this approach can be wasteful since it involves allocating a
thread for each job, a thread which spends most of its lifetime doing nothing while tying
up resources. It may be important to note that both the middleware API and the imple-
mentation must be asynchronous in order to derive a scalability benefit. For example, the
Python implementation of the SAGA provides an asynchronous API layer implemented
as a wrapper around a thread based, synchronous core, which is unsatisfactory.

A second important feature of middleware is longevity. By longevity we mean the
ability of middleware to continue to perform its intended purpose. From a reproducibility
perspective, we must be particularly sensitive to this. Middleware typically used to access
HPC resources can lack long term support and funding. Additionally, the incentives re-
quired to support stable software produced in a research environment do not always align
with the needs of long term executability and reproducibility. A corollary is that “*-as-a-
service” solutions tend to be insufficient since not only does the client side, including for
example Whole Tale, lack long term support, but so does the service side. Even assuming
open source and that the possibility of maintaining the client side component of the mid-
dleware exists, the service side may still pose challenges, in particular when deployment
is on resources that are not under the control of either Whole Tale or users. For example,
TeraGrid, the precursor to XSEDE, allowed HPC job submission to resources using spe-
cialized services which are not used by XSEDE. As a consequence, software written to
work on TeraGrid using the corresponding client libraries would be unable to function
today on XSEDE due to a lack of corresponding services. However, preservation of Tales
can enable transparency for HPC workflows, even when re-executability is not possible.

Longevity is a difficult problem but solutions are possible. The Whole Tale project
could develop a “middleware insulation service” which would allow Tales to program
against an API that is fixed in time. The Whole Tale team would then maintain working

K. Chard et al. / Toward Enabling Reproducibility for Data-Intensive Research 773



bindings from the insulation service to current HPC middleware. This requires that the
Whole Tale project itself is sufficiently supported in the future, which is not a certainty.
Alternatively, HPC middleware could be based on protocols that are well known and
likely to endure the test of time. Specifically, SSH is nearly universally available on HPC
clusters and if the list of LRM implementations is relatively small with stable interfaces,
middleware that uses SSH to connect to HPC resources and invokes the relevant LRM
commands would be usable even if the core Whole Tale services were unavailable. With
the ability to save Tales in a format that allows them to be downloaded from repositories
independently of the existence of a working Whole Tale deployment, a feature which
we presently support, there is a potential path toward the long term utility of “Tales at
Scale.” To increase the potential long term utility of “Tales at Scale” HPC runs could be
made increasingly transparent through provenance capture via the Whole Tale platform,
even when re-executability may not be possible.

5.3. Managing HPC Network Restrictions

Many HPC clusters restrict incoming network connections to compute nodes from out-
side the cluster. Tale frontends however require incoming network connections in order
to expose their user interface. Consequently, a general solution involving Tale frontends
on compute nodes requires some form of proxying of connections from the Whole Tale
cluster to HPC cluster compute nodes. Restrictions on incoming network connections
may likely be a result of local security policies and therefore proxying, even if authenti-
cated, may be seen as an unwelcome circumvention of such policies potentially requiring
engagement with HPC resource managers. Many computing centers are now deploying
Jupyter environments which opens the possibility of leveraging these resources directly.

5.4. Containerization and HPC Workloads

For the purpose of containerization, we can divide HPC workloads into unoptimized
applications, optimized applications, and mixed applications. Unoptimized applications
refer to various tools that use general CPU instructions and can be compiled (or are
interpreted) and run on most types of hardware. Optimized applications are designed to
benefit from specialized CPU instructions, such as Streaming SIMD Extensions (SSE)
instructions or GPU hardware. Mixed applications consist of unoptimized driving code
with optimized cores provided by specialized libraries.

From the standpoint of computational reproducibility, optimization poses a funda-
mental problem, since it benefits from specialization for particular hardware, whereas
the ability to re-run code at different points in time and on different hardware requires
abstraction. For mixed and unoptimized applications, containerization can capture the
environment and dependencies of the unoptimized parts. On the other hand, when deal-
ing with optimized applications or libraries, recording such code in optimized form leads
to a dependence on specific hardware which can affect the ability for the code to be re-
run if the specific hardware becomes unavailable. Even without that issue, typical opti-
mized HPC applications are compiled for specific hardware and statically linked against
libraries specific to that hardware to improve performance, rendering containers unnec-
essary. Unfortunately providing only precompiled executables in a Tale introduces opac-
ity in the computation that underlies the research, implying that the relevant source code

K. Chard et al. / Toward Enabling Reproducibility for Data-Intensive Research774



should always be included in a Tale to enables transparency as well as reproducibility,
regardless of whether otherwise reproducible binary code is included or not. In addition
to including the source code in a published Tale, several possible choices regarding the
inclusion of optimized binary code exist:

1. Package generic, pre-compiled, statically linked executables with Tales. These
Tales will therefore be tied to a specific architecture (e.g. AMD64) and may per-
form suboptimally on specific HPC resources that share the architecture but not
necessarily the fine details of custom instruction sets.

2. Package multiple versions of pre-compiled, statically linked executables with
Tales, one for each target HPC resource. This provides performance optimality,
but is tied to a specific set of resources.

3. Package source code and generic libraries required to compile the source code,
which may perform suboptimally on specific HPC resources, but is not necessar-
ily tied to a specific architecture.

4. Provide as much ancillary infrastructure to allow on-demand compilation against
custom HPC libraries when a Tale is run. This may include compilation on
target HPC resources or cross-compilation including possibly copies of li-
braries/compilers optimized for target HPC resources.

Each of these choices involves tradeoffs between reproducibility/portability and Tale
size and complexity. For example, GCC on BlueGene/Q machines produces unoptimized
code that, three years ago, was significantly slower than code produced by the IBM XL
compiler which used specialized PPC vector instructions. However, the XL compiler is
proprietary and, even if available for free, the license of proprietary tools may or may not
permit redistribution in a form suitable for direct inclusion in Tales.

In addition, an instance of an experiment must decide on a concrete set of dependen-
cies. This can lead to an overspecification, for example including irrelevant constraints
on the dependencies, such as specific versions of libraries. This can be problematic if
repeatability is affected when such constraints are relaxed. To give a fabricated by not
atypical example, imagine an experiment uses a linear algebra library to multiply matri-
ces and specifies that version 1.0.2 of the library should be used. When the experiment
is re-run with version 1.0.2 of the library, the same results are obtained. However, when
version 1.0.3 is used, the results differ. This example shows how altering dependencies
can change scientific results obtained at the application level.

5.5. Data access and Data Quasi-locality

The current implementation of Whole Tale uses a cache (internally called the Data Man-
agement System, or DMS) which brings data from external collections to Whole Tale
resources. It does the relevant transfer when users attempt to open the corresponding
files from inside a Tale. However, different strategies are available and initiating transfers
when a Tale is created is possible. This would result in a quasi locality of data since,
after the initial transfer, the data is local. There are limitations to this type of solution.
One is that data repositories may contain significantly more data than would be feasible
to transfer and store on Whole Tale resources. On the other hand, for many applications
only a small subset of the data in external repositories would be actively used at any
given time. Data access and usage patterns remain an open question which could inform
the viability of particular solutions.

K. Chard et al. / Toward Enabling Reproducibility for Data-Intensive Research 775



In the event that Tale frontends and/or HPC workloads run on HPC resources on
which copies of data are already available, the current Whole Tale implementation would
be inefficient, since each file would be transferred once to Whole Tale resources and once
for each Tale frontend instance that accesses the file. Bypassing this mechanism requires
that we develop an alternative solution to the current DMS. The precise details depend
on how such data are exposed on HPC resources. There are two main options. The first
occurs when data are accessible on HPC resources from a POSIX file system. In this
case, the solution consists simply of instructing the container system, if one is used, to
mount the relevant files/directories inside the Tale container. The second option is that
data are available on HPC resources through a non-POSIX interface. In this scenario,
Tale initialization (or HPC task initialization) must invoke the relevant tools to transfer
the files to a locally accessible location on the HPC resource.

6. Conclusions and Future Work

We have attempted to describe the challenges inherent in extending the Whole Tale plat-
form to enable reproducible data-intensive research at scale including frontend respon-
siveness needs, gaps in current middleware design and implementation, network restric-
tions, containerization, and data access. We have provided several examples outlining
possible steps forward for the Whole Tale system in advancing reproducibility for data-
and compute-intensive scientific applications, related to work on the adoption of com-
mon workflow systems and the capture of detailed experiment provenance information
for reproducibility [20,21,22,23,24,25].

The “Tale” specification [14], mentioned at the outset, is designed to capture and
communicate information needed to reproduce the scientific results it contains (at least
contemporaneously), and includes all code, data, libraries, and environment information
(collectively, dependencies) necessary for an experiment to be re-run. However, regener-
ating identical computational results when an experiment is repeated does not necessar-
ily indicate scientific correctness. Rerunning faulty experiments can produce the same
faulty results. The task of relaxing dependencies to a necessary minimum is complicated
by the fact that non-trivial software may require overspecified dependencies due to rea-
sons that are not relevant to the experiment. For example, libraries may themselves have
more or less strict constraints on their dependencies, which are due to code paths that are
not exercised by a particular experiment. It is perhaps important to recognize that the role
of projects like Whole Tale is primarily one of accurate recorders that remove the guess-
work from the task of understanding the context in which the original experimenters
obtained their results. By contrast, the task of ensuring scientific correctness is mainly
left to the scientific community at large. This suggests that, faced with many technical
challenges in supporting the re-executability of complex HPC workloads, a more practi-
cal short term goal might be to focus on enabling the systematic capture of provenance
information, recording the conditions under which experiments were performed. This
instrumentation process would still benefit from access to the interactive environment in
which the experiment is run.

Through its creation of “Tales,” the Whole Tale platform embraces reproducibility
as a form of packaging for transparency. Today, the Whole Tale system can be used to
package data- and compute-intensive research artifacts and provide an interactive en-

K. Chard et al. / Toward Enabling Reproducibility for Data-Intensive Research776



vironment for exploration. The Whole Tale platform could also be extended to enable
researchers to launch interactive environments during the exploratory phase of their re-
search as well which may require providing access to specialized compute resources or
data. Whole Tale can achieve this goal today in the context of running on a single node.
We have also described the more challenging case of capturing information regarding
code, data, and the computational environment via the interactive environment provided
by Whole Tale, including provenance information [25], with the goal of enabling re-
execution for data-intensive workloads at scale.

References

[1] Brinckman A, Chard K, Gaffney N, Hategan M, Jones MB, Kowalik K, et al. Computing environments
for reproducibility: Capturing the ”Whole Tale”. Future Generation Comp Syst. 2019;94:854–867.
doi:10.1016/j.future.2017.12.029.

[2] Donoho DL, Maleki A, Rahman IU, Shahram M, Stodden V. Reproducible Research in Computational
Harmonic Analysis. Computing in Science Engineering. 2009;11(1):8–18. doi:10.1109/MCSE.2009.15.

[3] Stodden V, Borwein JM, Bailey DH. ‘Setting the Default to Reproducible’ in Computa-
tional Science Research; 2013. Available from: https://sinews.siam.org/Details-Page/

setting-the-default-to-reproducible-in-computational-science-research.
[4] Collberg C, Proebsting TA. Repeatability in Computer Systems Research. Commun ACM.

2016;59(3):62–69. doi:10.1145/2812803.
[5] Jimenez I, Sevilla M, Watkins N, Maltzahn C, Lofstead J, Mohror K, et al. Standing on the Shoulders of

Giants by Managing Scientific Experiments Like Software. ;login: The USENIX Magazine. 2016;41(4).
[6] Yuan Z, Ton That DH, Kothari S, Fils G, Malik T. Utilizing Provenance in Reusable Research Objects.

Informatics. 2018;5(1). doi:10.3390/informatics5010014.
[7] Chirigati F, Rampin R, Shasha D, Freire J. ReproZip: Computational Reproducibility With Ease. In:

Proceedings of the 2016 International Conference on Management of Data. SIGMOD ’16. New York,
NY, USA: ACM; 2016. p. 2085–2088. Available from: http://doi.acm.org/10.1145/2882903.
2899401.

[8] Monajemi H, Donoho DL, Stodden V. Making massive computational experiments painless. In: 2016
IEEE International Conference on Big Data (Big Data); 2016. p. 2368–2373.

[9] Cranmer K, Yavin I. RECAST — extending the impact of existing analyses. Journal of High Energy
Physics. 2011;4:38. doi:10.1007/JHEP04(2011)038.

[10] Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten Simple Rules for Reproducible Computational
Research. PLOS Computational Biology. 2013;9(10):1–4. doi:10.1371/journal.pcbi.1003285.

[11] O’Shea BW, Wise JH, Xu H, Norman ML. Probing the Ultraviolet Luminosity Function of the
Earliest Galaxies With the Renaissance Simulations. The Astrophysical Journal. 2015;807(1):L12.
doi:10.1088/2041-8205/807/1/l12.

[12] Chard K, Gaffney N, Jones MB, Kowalik K, Ludäscher B, Nabrzyski J, et al. Implementing Computa-
tional Reproducibility in the Whole Tale Environment. In: Proceedings of the 2nd International Work-
shop on Practical Reproducible Evaluation of Computer Systems, P-RECS@HPDC 2019, Phoenix,
AZ, USA, June 24, 2019.; 2019. p. 17–22. Available from: https://doi.org/10.1145/3322790.
3330594.

[13] Chard K, Gaffney N, Jones MB, Kowalik K, Ludäscher B, Nabrzyski J, et al. Implementing Computa-
tional Reproducibility in the Whole Tale Environment. In: Proceedings of the 2Nd International Work-
shop on Practical Reproducible Evaluation of Computer Systems. P-RECS ’19. New York, NY, USA:
ACM; 2019. p. 17–22. Available from: http://doi.acm.org/10.1145/3322790.3330594.

[14] Chard K, Gaffney N, Jones MB, Kowalik K, Ludäscher B, Nabrzyski J, et al. Implementing Computa-
tional Reproducibility in the Whole Tale Environment. In: Proceedings of the 2Nd International Work-
shop on Practical Reproducible Evaluation of Computer Systems. P-RECS ’19. New York, NY, USA:
ACM; 2019. p. 17–22. Available from: http://doi.acm.org/10.1145/3322790.3330594.

[15] Kluyver T, Ragan-Kelley B, Pacrez F, Granger B, Bussonnier M, Frederic J, et al. In: Jupyter Notebooks
– a publishing format for reproducible computational workflows; 2016. p. 87–90.

K. Chard et al. / Toward Enabling Reproducibility for Data-Intensive Research 777



[16] Stewart, C.A., Cockerill, T.M., Foster, I., Hancock, D., Merchant, N., Skidmore, E., Stanzione, D., Tay-
lor, J., Tuecke, S., Turner, G., Vaughn, M., and Gaffney, N.I. Jetstream: a self-provisioned, scalable
science and engineering cloud environment. 2015, In Proceedings of the 2015 XSEDE Conference: Sci-
entific Advancements Enabled by Enhanced Cyberinfrastructure. St. Louis, Missouri. ACM: 2792774.
p. 1-8. doi:10.1145/2792745.2792774.

[17] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew Grimshaw, Victor Ha-
zlewood, Scott Lathrop, Dave Lifka, Gregory D. Peterson, Ralph Roskies, J. Ray Scott, Nancy Wilkins-
Diehr XSEDE: Accelerating Scientific Discovery. Computing in Science & Engineering, vol.16, no. 5,
pp. 62-74, Sept.-Oct. 2014. doi:10.1109/MCSE.2014.80

[18] Foster IT. Globus Toolkit Version 4: Software for Service-Oriented Systems. J Comput Sci Technol.
2006;21(4):513–520. doi:10.1007/s11390-006-0513-y.

[19] Garreau M, Faurot W. Redux in Action. 1st ed. Greenwich, CT, USA: Manning Publications Co.; 2018.
[20] Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, et al. The Galaxy platform for

accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Research.
2016;44(W1):W3–W10. doi:10.1093/nar/gkw343.

[21] Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, et al. Scientific Workflow
Management and the Kepler System. Concurr Comput : Pract Exper. 2006;18(10):1039–1065.
doi:10.1002/cpe.v18:10.

[22] Deelman E, Vahi K, Juve G, Rynge M, Callaghan S, Maechling PJ, et al. Pegasus, a workflow man-
agement system for science automation. Future Generation Computer Systems. 2015;46:17 – 35.
doi:https://doi.org/10.1016/j.future.2014.10.008.

[23] Hunold S, Träff JL. On the State and Importance of Reproducible Experimental Research in Parallel
Computing. CoRR. 2013;abs/1308.3648.

[24] Fursin G, Lokhmotov A, Savenko D, Upton E. A Collective Knowledge workflow for collaborative
research into multi-objective autotuning and machine learning techniques. CoRR. 2018;abs/1801.08024.

[25] Pouchard L, Baldwin S, Elsethagen T, Jha S, Raju B, Stephan E, et al. Computational reproducibility
of scientific workflows at extreme scales. The International Journal of High Performance Computing
Applications. 2019;33(5):763–776. doi:10.1177/1094342019839124.

K. Chard et al. / Toward Enabling Reproducibility for Data-Intensive Research778


