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Abstract. Cellular automata are a massively parallel programming model that are 
capable to solve many algorithmic problems efficiently. The complexity of defining 

a suitable cell rule for a concrete problem can be overcome by the use of the 

extended model of global cellular automata in conjunction with specialized 
compilers, to translate a high-level imperative programming language to cellular 

automata. Obviously, the execution on universal multicore processors does not 
make use of the full parallel potential of cellular automata and the workflow for 

direct hardware implementations is slow and hard to debug. In this paper, we 

propose a novel processor architecture that can execute a global cellular automaton 
as software and can still compete with other software or hardware implementations. 

Keywords. FPGA, Cellular Automata, Processor Architecture, Parallel Processing, 

Dataflow 

1. Introduction 

Cellular automata (CA) are a massively parallel model that can easily be implemented in 

hardware [1]. There exist several application fields for cellular automata, e.g. image 

processing, machine learning, fluid dynamic or traffic simulation [2]. On the other side, 

writing a program for a cellular automaton that can solve a given problem is extremely 

challenging, as a cell has a strict and homogenous neighborhood and there is only one 

rule for all cells. Mortensen [3] presented a method to compile a high-level imperative 

programming language to the cellular automata model, so developers can write their 

algorithms in the usual way they do, and although benefit from the parallel execution. 

Unfortunately, the resulting automaton is somehow inefficient as information has to be 

passed from one cell to another over long distances, which is done by a message passing 

protocol. 

To overcome the restrictions of a cellular automaton, the so-called global cellular 

automata (GCA) have been introduced [4] [5]. 

Definition. For a given natural number k, a global cellular automaton (GCA) is a 4-

tuple  consisting of 

� the set of cells , 

� the neighborhood function , 

� the set of cell states , 

� the state transition function . 
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In contrast to a cellular automaton, the neighborhood of a cell does not only depend 

on the cell itself, but also of its current state. Thus, a cell might have a totally different 

neighborhood from one generation to another. The number of neighbors is denoted with 

k and might be constant or variable as well. Furthermore, the definition of the state 

transition function  allows the use of individual rules for each cell. While it is easier to 

implement algorithms in software, an implementation in hardware is more complex 

because of the varying neighborhood. Several approaches have been presented in [6] [7] 

[8]. Common to all, there is always a compromise between generality and runtime. 

Specialized approaches are fast, but running a different algorithm is a complex process. 

In contrast, more general approaches have a great overhead in space and time. 

Drieseberg et al. [9] use global cellular automata and combine them with the 

approach of Mortensen. They presented a compiler for a subset of the C programming 

language. It generates a GCA that can be run on a multicore CPU, a GPU or an FPGA. 

Experimental results show, that a speedup could be achieved compared to a program that 

was compiled with a standard C compiler and executed on an ordinary CPU. This was 

especially true for the implementation on an FPGA, which could achieve the highest 

speedup factor compared to the runtime of the same algorithm on a CPU. However, the 

development cycle includes the synthesis and place & route process of the hardware 

description and is very time-consuming. Additionally, the presented compiler creates a 

huge number of cells, already for small algorithms with a few lines of code. This results 

in a very slow or even impossible routing [10]. 

In this paper, we present a hardware architecture that executes global cellular 

automata written as software. The architecture is generalized and can execute a high 

number of cells. Nevertheless, it aims to reach high speedup factors compared to the 

execution of cellular automata on universal hardware. We also propose a mapping 

process of standard syntax elements of imperative programming languages (such as 

operators, if and while) to our cellular processor architecture, which results in much 

fewer cells than the approach of Drieseberg. 

2. Hardware Architecture for Execution of Global Cellular Automata 

In this section, we present a hardware architecture for a processor that is able to calculate 

a global cellular automaton  where 

�  is a finite subset of the natural numbers (called the cell IDs), 

�  is the neighborhood function with  or  depending on the local cell 

state, 

�  is the set of all possible cell states, 

�  is the state transition function (called the rules). 

An element of Q is a 4-tuple where is the program counter,  is the accumulator, 

 the cell value and  the local cell state. The set  is composed of the subset 

of invalid states , containing the states Busy, LikelyTrue, LikelyFalse and Reset, and of 

the subset of valid states , containing the states Ready, True, False and LoopReset. 
In a global cellular automaton, the neighborhood of a cell depends not only of the 

cell ID, but also of its state. More precisely, it depends on the value of the program 

counter, which might change in every new generation. The definition of the GCA above 
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implies that a cell has either one neighbor cell at a given time or no neighbor at all. We 

agree that if a cell has a neighboring cell, it might use its cell value  or its local cell state 

, but not its program counter and accumulator to calculate the cell’s new cell state in . 

The number of cells in  and the state transition function  highly depends on the 

function the cellular automaton computes. For a hardware architecture, we have to limit 

the number of cells and to define a set of general rules the designer of the function can 

choose from. 

2.1. Ruleset 

The ruleset can be divided into four categories: initialization, arithmetic/logic, 

comparison and control. Every rule may be annotated with a valid flag that has two 

effects when the rule actually changes the cell’s program counter. First, the new value of 

the accumulator is copied to the cell’s value . Second, if the cells local state  is in , it 

is changed to a corresponding state in  according to Table 1. The local states Reset and 

LoopReset have a special meaning and are not affected by the valid flag. 

Table 1. Local cell state changes when valid flag is set in a rule 

Old State New State 
Busy, Ready Ready 

LikelyTrue, True True 
LikelyFalse, False False 

Initialization rules are used to set a definite value in the cell’s accumulator. This 

value might be a constant (set rule) or the cell value of a neighboring cell if its local 

state  is valid (read rule). There are also variants of the set and read rules which only 

set the accumulator when the condition  is met (init rule), or increase the cells 

program counter by two instead of one (skip rule). A complete list of the initialization 

rules and their impacts is shown in Table 2. They do not change the cell value or the local 

cell state if the rule is not annotated with a valid flag. 

Table 2. List of initialization rules 

Rule Program Counter Accumulator 
Set   

Set and Skip   

Set Init  
 

Read 
  

Read and Skip 
  

Read Init 
  

Arithmetic/logic rules implement unary operators (denoted with ) such as 

negation or binary operators (denoted with ) such as addition or subtraction. The first 

operand is always the accumulator of the cell, the second is either a constant or the 

value of a neighboring cell. Like initialization rules, they have no impact on the cell 

value or the local cell state if a valid flag is not present, but all the other effects are 

presented in Table 3. 
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Table 3. List of arithmetic/logic rules 

Rule Program Counter Accumulator 
Unary operator    

Binary operator 

(constant) 
  

Binary operator 
(neighbor cell) 

  

Comparison rules compare the accumulator with a constant or the value of another 

cell, and write the result into the accumulator as stated in Table 4. Afterwards, they also 

change the local cell state as defined in Eq. 1. 

    (1) 

Table 4. List of Comparison rules 

Rule Program Counter Accumulator 
Comparison with 
constant 

 
 

Comparison with 

neighbor 
 

 

Control rules do not change the cells accumulator, but the program counter as well 

as the local cell state. The available rules are listed in Table 5 and can be divided into 

three groups: 

� Rules that wait for a neighboring cell to take over a specific local state  

(wait rule) 

� Rules that increase the program counter by two instead of one when the own 

local state or the local cell state of a neighbor is True (skip rule) 

� Rules for halting or resetting a cell 

Table 5. List of control rules 

Rule Program Counter Local Cell State 
Wait rule 

 
No change 

Skip rule 

(local) 
 

No change 

Skip rule 

(neighbor)  

No change 

Reset rule 

(local) 
  

Reset rule 
(neighbor) 

 
 

Loop (reset) rule 
  

Halt rule No change No change 
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2.2. Processor Architecture 

The processor is built of several so-called cell compute units (CCUs) and an on-chip-

network for interconnection, as presented in Figure 1. There is also a control unit (CU) 

connected to the network that has access to an external main memory. The CU is 

responsible for loading the individual cell rules from main memory into the CCUs before 

the automaton can be run. It also monitors the state of the automaton and signals the 

completion of work when all cells become inactive, thus there are no more state changes 

from one generation to another. 

A cell compute unit is designed for minimal hardware consumption. It uses a 

1-operand-machine architecture, as presented in Figure 2, which is sufficient to execute 

a cell rule, because a rule has at most one operand that might be a constant (also: 

immediate) value or the value of a neighboring cell. Each CCU has four registers to store 

 

Figure 2. CCU architecture in details 

 

Figure 1. Overall processor architecture 
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the value of the cell’s state tuple . The program counter addresses a small 

memory belonging to the cell which is capable to hold a couple of rules and their 

operands. If a cell has a neighbor in the current generation, the ID of the neighbor is 

routed to the network-on-chip to request its local state and value. The cell’s own local 

state and value are always provided to the network as well. A decoder unit decodes the 

rule and generates following control signals: 

� an opcode for an arithmetic/logical unit (ALU) 

� a signal to select the correct operand (imm) 

� a signal to take over the ALU result as new cell value (valid flag) 

� the next program counter 

� the new local cell state 

2.3. Mapping imperative programming languages to GCA ruleset 

As already mentioned, writing a program for a cellular automaton is different than 

writing it in a programming language like C. Therefore, it is desirable to have a mapping 

algorithm from an imperative programming language to the ruleset of the presented 

hardware architecture. Based on the ideas of Drieseberg and Mortensen we propose the 

following procedure: 

1. Transform the imperative program into static single assignment (SSA) form (as 

described in [11]) 

2. Build a dataflow graph of the transformed program (see example in Figure 3) 

3. Replace each node in the dataflow graph with a cell and create the rules for each 

created cell 

4. Optimize the resulting cell graph to reduce the number of cells 

 

Figure 3. Example of a dataflow graph and the corresponding program in pseudocode 

FUNCTION(a, b) 
    IF a < 0 THEN 
        c = -b 
    ELSE 
        c = 0 
        WHILE a > 0 DO 
            c = c + b 
            a = a - 1 
        END 
    END 
    RETURN c 
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Step 1 includes several sub-procedures, like parsing the source code or building the 

control flow graph and (abstract) syntax trees, before the SSA form can be generated. 

Step 2 is very simple once the program is in SSA form. Additional optimizations (for 

instance removing unused variables, balancing expressions, etc.) could take place before. 

An example dataflow graph is presented in Figure 3. It consists of nine types of nodes 

that are generated from the keywords and literals in the original program code. The edges 

of the graph show the actual flow of data, beginning from the input nodes (IN) to the 

output nodes (OUT). They are annotated with additional information, so that the target 

node can handle the incoming data correctly. For example, a binary operator node needs 

to know the order of its operand, whereat LHS (left-hand side) denotes the left operand 

and RHS (right-hand side) the right one. Yet another example is the phi-nodes that belong 

to the while-node: they require the loop condition (COND) to decide if they have to 

choose the initial value, that is valid before the loop body is executed (INIT), or the value 

computed in the loop body (BODY). In step 3, the nodes of the dataflow graph are 

replaced with cells according to Figure 4. Every generated cell is assigned an ID that is 

used by other cells in their cell rules to access the cell’s state. The cell rules are 

abbreviated with a self-explanatory mnemonic. Mnemonics written in bold font have the 

 

Figure 4. Translation of dataflow graph nodes to cells 
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valid flag set. Input and output cells have a special @i-operand that denotes to the i-th 

argument or return value, respectively. Numbers with a leading # symbol denote a literal 

value; without it they represent the ID of another cell. In some situations, an additional 

wait-rule must be prepended to a cell. This is when it wants to read from a phi-cell of a 

while loop outside of the loop body. Because the value of such a phi-cell is always valid 

during the execution of the loop, the cell outside must wait for the loop condition to be 

false (see Figure 5). Step 4 tries to eliminate cells by inserting their rules into another 

one. For example, literal nodes are easy to integrate into another cell, just by replacing a 

read access with a literal value. In Figure 5, the optimization process has been executed 

for the illustrated algorithm. 

 

Figure 5. Optimized cell graph for an algorithm 

3. Results 

The presented processor architecture has been implemented in VHDL and synthesized 

with the Xilinx Vivado toolchain. A single cell compute unit with a 32-bit word size, 

including a multiplier unit using DSP slices, occupies around 480 lookup tables and 100 

flip-flops. In a high-end 7-series Virtex FPGA with 2 million logic cells (type 

XC7V2000T) this corresponds to only 0.04% of logic consumed, so hundreds of CCUs 

can be integrated into a single FPGA. The local cell memory is implemented as LUT-

RAM and uses 40 of the total 480 lookup tables (32 for the operand and 8 for the encoded 

rule). Depending on the FPGA technology, the possible number of rules per CCU varies. 

For a 6-input LUT this means 64 rules per cell. 

For our experiments, we used a crossbar as network-on-chip. Although this network 

architecture uses a lot of FPGA logic (large multiplexer structures are needed for each 

single data bit), it has a low latency and is easy to implement. There exist lots more 

network architectures that might be suitable for the processor architecture (a good survey 

can be found in [12]), especially the so-called Benes-network is an appropriate candidate 

[13], as it is collision-free and resource-efficient. The complex routing algorithm can 

also be implemented in hardware [14]. 

FUNCTION(a) 
    b = 0 
    WHILE a > 0 DO 
        a = a - 1 
        b = b + 5 
    END 
    RETURN b 
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The first algorithm we analyzed consist of a matrix multiplication of two 3x3 

matrices. This operation has a high degree of parallelism as all 9 elements of the resulting 

matrix can be computed concurrently. Even the three multiplications needed to compute 

an element can run in parallel. The corresponding global cellular automaton has a total 

of 38 cells and was executed on a system with a maximum of 63 cells. Simulation shows 

that it took only five generations to compute the result, as illustrated in Figure 6. Cells 

highlighted with a red border did change their state in the current generation, and yellow 

cells are in a valid local state.  

 

Figure 6. Execution of a matrix multiplication 

Another algorithm we implemented was Stein’s algorithm [15], the binary version 

of the greatest common divisor (GCD), and compared the results with the FPGA 

implementation of Drieseberg et al. Their GCD global cellular automaton consists of 258 

cells, whereas our optimized automaton consists of only 24 cells, which is less than 10%. 

We simulated the execution of the algorithm with the two input values 3528 and 3780. 

It took 217 generations to calculate the result of 252. This is also less, and only a third, 

of the number of generations compared to Drieseberg et al. It must be pointed out, that 

the number of generations is only an indicator to the actual execution time, as our 

simulation does not consider any hardware properties. Thus, the achievable clock 

frequency of the proposed processor architecture might be much slower due to 

propagation delays. Further research has to be done here. If a generation needs one clock 

cycle to compute and we assume a clock frequency of only 50 MHz, our automaton 

would need around 4 ms to calculate the GCD. Indeed, this is much slower than the 

FPGA implementation of Drieseberg et al. but still faster than the CPU and GPU variants. 

4. Conclusion 

In this paper, we presented a new processor architecture that is able to execute global 

cellular automata with a specialized ruleset as a software program. The ruleset is 
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designed in such a way that algorithms written in an imperative programming language 

can easily be mapped to a global cellular automaton with a low number of cells needed. 

The automation of this process is one of our next steps. In first experiments, we 

confirmed that the presented architecture can achieve faster execution times than a 

software implementation on a universal processor. This advantage outweighs even more, 

if the executed algorithm has a high degree of parallelism. Nevertheless, further research 

has to be done with real-world applications to fully prove the advantages of the 

architecture. Furthermore, the processor has to be implemented and evaluated on an 

FPGA to analyze the scalability of the architecture and to obtain actual execution times. 
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