
A Processor Architecture for Executing

Global Cellular Automata as Software

Christian RISTIGa,1 and Christian SIEMERSa
a

 Department of Informatics, Clausthal University of Technology, Germany

Abstract. Cellular automata are a massively parallel programming model that are
capable to solve many algorithmic problems efficiently. The complexity of defining

a suitable cell rule for a concrete problem can be overcome by the use of the

extended model of global cellular automata in conjunction with specialized
compilers, to translate a high-level imperative programming language to cellular

automata. Obviously, the execution on universal multicore processors does not
make use of the full parallel potential of cellular automata and the workflow for

direct hardware implementations is slow and hard to debug. In this paper, we

propose a novel processor architecture that can execute a global cellular automaton
as software and can still compete with other software or hardware implementations.

Keywords. FPGA, Cellular Automata, Processor Architecture, Parallel Processing,

Dataflow

1. Introduction

Cellular automata (CA) are a massively parallel model that can easily be implemented in

hardware [1]. There exist several application fields for cellular automata, e.g. image

processing, machine learning, fluid dynamic or traffic simulation [2]. On the other side,

writing a program for a cellular automaton that can solve a given problem is extremely

challenging, as a cell has a strict and homogenous neighborhood and there is only one

rule for all cells. Mortensen [3] presented a method to compile a high-level imperative

programming language to the cellular automata model, so developers can write their

algorithms in the usual way they do, and although benefit from the parallel execution.

Unfortunately, the resulting automaton is somehow inefficient as information has to be

passed from one cell to another over long distances, which is done by a message passing

protocol.

To overcome the restrictions of a cellular automaton, the so-called global cellular

automata (GCA) have been introduced [4] [5].

Definition. For a given natural number k, a global cellular automaton (GCA) is a 4-

tuple consisting of

� the set of cells ,

� the neighborhood function ,

� the set of cell states ,

� the state transition function .

1 Corresponding Author: Christian Ristig, Department of Informatics, Clausthal University of Technology,

Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany. E-mail:christian.ristig@tu-clausthal.de

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200101

711

In contrast to a cellular automaton, the neighborhood of a cell does not only depend

on the cell itself, but also of its current state. Thus, a cell might have a totally different

neighborhood from one generation to another. The number of neighbors is denoted with

k and might be constant or variable as well. Furthermore, the definition of the state

transition function allows the use of individual rules for each cell. While it is easier to

implement algorithms in software, an implementation in hardware is more complex

because of the varying neighborhood. Several approaches have been presented in [6] [7]

[8]. Common to all, there is always a compromise between generality and runtime.

Specialized approaches are fast, but running a different algorithm is a complex process.

In contrast, more general approaches have a great overhead in space and time.

Drieseberg et al. [9] use global cellular automata and combine them with the

approach of Mortensen. They presented a compiler for a subset of the C programming

language. It generates a GCA that can be run on a multicore CPU, a GPU or an FPGA.

Experimental results show, that a speedup could be achieved compared to a program that

was compiled with a standard C compiler and executed on an ordinary CPU. This was

especially true for the implementation on an FPGA, which could achieve the highest

speedup factor compared to the runtime of the same algorithm on a CPU. However, the

development cycle includes the synthesis and place & route process of the hardware

description and is very time-consuming. Additionally, the presented compiler creates a

huge number of cells, already for small algorithms with a few lines of code. This results

in a very slow or even impossible routing [10].

In this paper, we present a hardware architecture that executes global cellular

automata written as software. The architecture is generalized and can execute a high

number of cells. Nevertheless, it aims to reach high speedup factors compared to the

execution of cellular automata on universal hardware. We also propose a mapping

process of standard syntax elements of imperative programming languages (such as

operators, if and while) to our cellular processor architecture, which results in much

fewer cells than the approach of Drieseberg.

2. Hardware Architecture for Execution of Global Cellular Automata

In this section, we present a hardware architecture for a processor that is able to calculate

a global cellular automaton where

� is a finite subset of the natural numbers (called the cell IDs),

� is the neighborhood function with or depending on the local cell

state,

� is the set of all possible cell states,

� is the state transition function (called the rules).

An element of Q is a 4-tuple where is the program counter, is the accumulator,

 the cell value and the local cell state. The set is composed of the subset

of invalid states , containing the states Busy, LikelyTrue, LikelyFalse and Reset, and of

the subset of valid states , containing the states Ready, True, False and LoopReset.
In a global cellular automaton, the neighborhood of a cell depends not only of the

cell ID, but also of its state. More precisely, it depends on the value of the program

counter, which might change in every new generation. The definition of the GCA above

C. Ristig and C. Siemers / A Processor Architecture for Executing Global Cellular Automata712

implies that a cell has either one neighbor cell at a given time or no neighbor at all. We

agree that if a cell has a neighboring cell, it might use its cell value or its local cell state

, but not its program counter and accumulator to calculate the cell’s new cell state in .

The number of cells in and the state transition function highly depends on the

function the cellular automaton computes. For a hardware architecture, we have to limit

the number of cells and to define a set of general rules the designer of the function can

choose from.

2.1. Ruleset

The ruleset can be divided into four categories: initialization, arithmetic/logic,

comparison and control. Every rule may be annotated with a valid flag that has two

effects when the rule actually changes the cell’s program counter. First, the new value of

the accumulator is copied to the cell’s value . Second, if the cells local state is in , it

is changed to a corresponding state in according to Table 1. The local states Reset and

LoopReset have a special meaning and are not affected by the valid flag.

Table 1. Local cell state changes when valid flag is set in a rule

Old State New State
Busy, Ready Ready

LikelyTrue, True True
LikelyFalse, False False

Initialization rules are used to set a definite value in the cell’s accumulator. This

value might be a constant (set rule) or the cell value of a neighboring cell if its local

state is valid (read rule). There are also variants of the set and read rules which only

set the accumulator when the condition is met (init rule), or increase the cells

program counter by two instead of one (skip rule). A complete list of the initialization

rules and their impacts is shown in Table 2. They do not change the cell value or the local

cell state if the rule is not annotated with a valid flag.

Table 2. List of initialization rules

Rule Program Counter Accumulator
Set

Set and Skip

Set Init

Read

Read and Skip

Read Init

Arithmetic/logic rules implement unary operators (denoted with) such as

negation or binary operators (denoted with) such as addition or subtraction. The first

operand is always the accumulator of the cell, the second is either a constant or the

value of a neighboring cell. Like initialization rules, they have no impact on the cell

value or the local cell state if a valid flag is not present, but all the other effects are

presented in Table 3.

C. Ristig and C. Siemers / A Processor Architecture for Executing Global Cellular Automata 713

Table 3. List of arithmetic/logic rules

Rule Program Counter Accumulator
Unary operator

Binary operator

(constant)

Binary operator
(neighbor cell)

Comparison rules compare the accumulator with a constant or the value of another

cell, and write the result into the accumulator as stated in Table 4. Afterwards, they also

change the local cell state as defined in Eq. 1.

 (1)

Table 4. List of Comparison rules

Rule Program Counter Accumulator
Comparison with
constant

Comparison with

neighbor

Control rules do not change the cells accumulator, but the program counter as well

as the local cell state. The available rules are listed in Table 5 and can be divided into

three groups:

� Rules that wait for a neighboring cell to take over a specific local state

(wait rule)

� Rules that increase the program counter by two instead of one when the own

local state or the local cell state of a neighbor is True (skip rule)

� Rules for halting or resetting a cell

Table 5. List of control rules

Rule Program Counter Local Cell State
Wait rule

No change

Skip rule

(local)

No change

Skip rule

(neighbor)

No change

Reset rule

(local)

Reset rule
(neighbor)

Loop (reset) rule

Halt rule No change No change

C. Ristig and C. Siemers / A Processor Architecture for Executing Global Cellular Automata714

2.2. Processor Architecture

The processor is built of several so-called cell compute units (CCUs) and an on-chip-

network for interconnection, as presented in Figure 1. There is also a control unit (CU)

connected to the network that has access to an external main memory. The CU is

responsible for loading the individual cell rules from main memory into the CCUs before

the automaton can be run. It also monitors the state of the automaton and signals the

completion of work when all cells become inactive, thus there are no more state changes

from one generation to another.

A cell compute unit is designed for minimal hardware consumption. It uses a

1-operand-machine architecture, as presented in Figure 2, which is sufficient to execute

a cell rule, because a rule has at most one operand that might be a constant (also:

immediate) value or the value of a neighboring cell. Each CCU has four registers to store

Figure 2. CCU architecture in details

Figure 1. Overall processor architecture

C. Ristig and C. Siemers / A Processor Architecture for Executing Global Cellular Automata 715

the value of the cell’s state tuple . The program counter addresses a small

memory belonging to the cell which is capable to hold a couple of rules and their

operands. If a cell has a neighbor in the current generation, the ID of the neighbor is

routed to the network-on-chip to request its local state and value. The cell’s own local

state and value are always provided to the network as well. A decoder unit decodes the

rule and generates following control signals:

� an opcode for an arithmetic/logical unit (ALU)

� a signal to select the correct operand (imm)

� a signal to take over the ALU result as new cell value (valid flag)

� the next program counter

� the new local cell state

2.3. Mapping imperative programming languages to GCA ruleset

As already mentioned, writing a program for a cellular automaton is different than

writing it in a programming language like C. Therefore, it is desirable to have a mapping

algorithm from an imperative programming language to the ruleset of the presented

hardware architecture. Based on the ideas of Drieseberg and Mortensen we propose the

following procedure:

1. Transform the imperative program into static single assignment (SSA) form (as

described in [11])

2. Build a dataflow graph of the transformed program (see example in Figure 3)

3. Replace each node in the dataflow graph with a cell and create the rules for each

created cell

4. Optimize the resulting cell graph to reduce the number of cells

Figure 3. Example of a dataflow graph and the corresponding program in pseudocode

FUNCTION(a, b)
 IF a < 0 THEN
 c = -b
 ELSE
 c = 0
 WHILE a > 0 DO
 c = c + b
 a = a - 1
 END
 END
 RETURN c

C. Ristig and C. Siemers / A Processor Architecture for Executing Global Cellular Automata716

Step 1 includes several sub-procedures, like parsing the source code or building the

control flow graph and (abstract) syntax trees, before the SSA form can be generated.

Step 2 is very simple once the program is in SSA form. Additional optimizations (for

instance removing unused variables, balancing expressions, etc.) could take place before.

An example dataflow graph is presented in Figure 3. It consists of nine types of nodes

that are generated from the keywords and literals in the original program code. The edges

of the graph show the actual flow of data, beginning from the input nodes (IN) to the

output nodes (OUT). They are annotated with additional information, so that the target

node can handle the incoming data correctly. For example, a binary operator node needs

to know the order of its operand, whereat LHS (left-hand side) denotes the left operand

and RHS (right-hand side) the right one. Yet another example is the phi-nodes that belong

to the while-node: they require the loop condition (COND) to decide if they have to

choose the initial value, that is valid before the loop body is executed (INIT), or the value

computed in the loop body (BODY). In step 3, the nodes of the dataflow graph are

replaced with cells according to Figure 4. Every generated cell is assigned an ID that is

used by other cells in their cell rules to access the cell’s state. The cell rules are

abbreviated with a self-explanatory mnemonic. Mnemonics written in bold font have the

Figure 4. Translation of dataflow graph nodes to cells

C. Ristig and C. Siemers / A Processor Architecture for Executing Global Cellular Automata 717

valid flag set. Input and output cells have a special @i-operand that denotes to the i-th

argument or return value, respectively. Numbers with a leading # symbol denote a literal

value; without it they represent the ID of another cell. In some situations, an additional

wait-rule must be prepended to a cell. This is when it wants to read from a phi-cell of a

while loop outside of the loop body. Because the value of such a phi-cell is always valid

during the execution of the loop, the cell outside must wait for the loop condition to be

false (see Figure 5). Step 4 tries to eliminate cells by inserting their rules into another

one. For example, literal nodes are easy to integrate into another cell, just by replacing a

read access with a literal value. In Figure 5, the optimization process has been executed

for the illustrated algorithm.

Figure 5. Optimized cell graph for an algorithm

3. Results

The presented processor architecture has been implemented in VHDL and synthesized

with the Xilinx Vivado toolchain. A single cell compute unit with a 32-bit word size,

including a multiplier unit using DSP slices, occupies around 480 lookup tables and 100

flip-flops. In a high-end 7-series Virtex FPGA with 2 million logic cells (type

XC7V2000T) this corresponds to only 0.04% of logic consumed, so hundreds of CCUs

can be integrated into a single FPGA. The local cell memory is implemented as LUT-

RAM and uses 40 of the total 480 lookup tables (32 for the operand and 8 for the encoded

rule). Depending on the FPGA technology, the possible number of rules per CCU varies.

For a 6-input LUT this means 64 rules per cell.

For our experiments, we used a crossbar as network-on-chip. Although this network

architecture uses a lot of FPGA logic (large multiplexer structures are needed for each

single data bit), it has a low latency and is easy to implement. There exist lots more

network architectures that might be suitable for the processor architecture (a good survey

can be found in [12]), especially the so-called Benes-network is an appropriate candidate

[13], as it is collision-free and resource-efficient. The complex routing algorithm can

also be implemented in hardware [14].

FUNCTION(a)
 b = 0
 WHILE a > 0 DO
 a = a - 1
 b = b + 5
 END
 RETURN b

C. Ristig and C. Siemers / A Processor Architecture for Executing Global Cellular Automata718

The first algorithm we analyzed consist of a matrix multiplication of two 3x3

matrices. This operation has a high degree of parallelism as all 9 elements of the resulting

matrix can be computed concurrently. Even the three multiplications needed to compute

an element can run in parallel. The corresponding global cellular automaton has a total

of 38 cells and was executed on a system with a maximum of 63 cells. Simulation shows

that it took only five generations to compute the result, as illustrated in Figure 6. Cells

highlighted with a red border did change their state in the current generation, and yellow

cells are in a valid local state.

Figure 6. Execution of a matrix multiplication

Another algorithm we implemented was Stein’s algorithm [15], the binary version

of the greatest common divisor (GCD), and compared the results with the FPGA

implementation of Drieseberg et al. Their GCD global cellular automaton consists of 258

cells, whereas our optimized automaton consists of only 24 cells, which is less than 10%.

We simulated the execution of the algorithm with the two input values 3528 and 3780.

It took 217 generations to calculate the result of 252. This is also less, and only a third,

of the number of generations compared to Drieseberg et al. It must be pointed out, that

the number of generations is only an indicator to the actual execution time, as our

simulation does not consider any hardware properties. Thus, the achievable clock

frequency of the proposed processor architecture might be much slower due to

propagation delays. Further research has to be done here. If a generation needs one clock

cycle to compute and we assume a clock frequency of only 50 MHz, our automaton

would need around 4 ms to calculate the GCD. Indeed, this is much slower than the

FPGA implementation of Drieseberg et al. but still faster than the CPU and GPU variants.

4. Conclusion

In this paper, we presented a new processor architecture that is able to execute global

cellular automata with a specialized ruleset as a software program. The ruleset is

C. Ristig and C. Siemers / A Processor Architecture for Executing Global Cellular Automata 719

designed in such a way that algorithms written in an imperative programming language

can easily be mapped to a global cellular automaton with a low number of cells needed.

The automation of this process is one of our next steps. In first experiments, we

confirmed that the presented architecture can achieve faster execution times than a

software implementation on a universal processor. This advantage outweighs even more,

if the executed algorithm has a high degree of parallelism. Nevertheless, further research

has to be done with real-world applications to fully prove the advantages of the

architecture. Furthermore, the processor has to be implemented and evaluated on an

FPGA to analyze the scalability of the architecture and to obtain actual execution times.

References

[1] M. Dascalu, "Cellular Automata Hardware Implementations - an Overview," Romanian Journal of
Information, Science and Technology, 2016.

[2] A. C. Lima and J. C. Ferreira, "Automatic Generation of Cellular Automata on FPGA," IX Jornadas
sobre Sistemas Reconfiguráveis, Februar 2013.

[3] M. Mortensen, High Level Parallel Programming Language Compiling to a Cellular Automata

Processing Model, Aarhus: Master's thesis, Aarhus Universitet, 2007.

[4] R. Hoffmann, K. P. Völkmann and S. Waldschmidt, "Global Cellular Automata GCA: An Universal

Extension of the CA Model," ACRI 2000 "work in progress" session, Karlsruhe, Germany, Oct. 4th -
6th, 2000.

[5] R. Hoffmann, K. P. Völkmann, S. Waldschmidt and W. Heenes, "GCA: Global Cellular Automata. A

Flexible Parallel Model," Parallel Computing Technologies, 6th International Conference, PaCT 2001,
Novosibirsk, Russia, September 3-7, 2001, Proceedings, 2001.

[6] R. Hoffmann, W. Heenes and M. Halbach, "Implementation of the Massively Parallel Model GCA,"

Parallel Computing in Electrical Engineering, 2004.

[7] W. Heenes, R. Hoffmann and J. Jendrsczok, "A Multiprocessor Architecture for the Massively Parallel

Model GCA," Parallel and Distributed Processing Symposium, 2006.

[8] C. Schäck, W. Heenes and R. Hoffmann, "A Multiprocessor Architecture with an Omega Network for
the Massively Parallel Model GCA," in Lecture Notes in Computer Science (LNCS, volume 5657),
Berlin, Heidelberg, Springer, 2009.

[9] J. Drieseberg and C. Siemers, "C to Cellular Automata and execution on CPU, GPU and FPGA,"
International Conference on High Performance Computing & Simulation (HPCS), pp. 216-222, 2012.

[10] J. Drieseberg, Abbildung sequentieller C-Programme auf parallel arbeitende Zellularautomaten,

Clausthal-Zellerfeld: Dissertation, Technische Universität Clausthal, 2016.

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman and F. K. Zadeck, "Efficiently Computing Static

Single Assignment Form and the Control Dependence Graph," in ACM Transactions on Programming
Languages and Systems, Vol 13, No 4, New York, 1991.

[12] T. Schwederski and M. Jurczyk, Verbindungsnetze: Strukturen und Eigenschaften, Stuttgart: Teubner,

1996.

[13] S. C. Stilkerich, C. Siemers and C. Ristig, "Appropriate Multi-core Architecture for Safety-critical
Aerospace Applications - Certifiable Real-time Switching Network," Proceedings of the 4th
International Conference on Pervasive and Embedded Computing and Communication Systems -
Volume 1: PECCS, pp. 180-185, 2014.

[14] S. Aust, ConPar - Ein Echtzeitparallelrechner zur Rezentralisierung von Steuergeräten im Automobil,

Clausthal-Zellefeld: Institut für Informatik TU Clausthal, 2013.

[15] J. Stein, "Computational problems associated with Racah algebra," Journal of Computational Physics,
Volume 1, Issue 3, pp. 397-405, 1967.

C. Ristig and C. Siemers / A Processor Architecture for Executing Global Cellular Automata720

