Parallel Computing: Technology Trends 681
L Foster et al. (Eds.)

© 2020 The authors and IOS Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200098

An Implementation of Non-Local Means
Algorithm on FPGA

Hayato KOIZUMI and Tsutomu MARUYAMA

Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennoudai,
Tsukuba, 305-8573, Japan
Email: maruyama@darwin.esys.tsukuba.ac.jp

Abstract. Non-Local means (NL-means) algorithm is a robust image denoising al-
gorithm. Its computational complexity is, however, higher than other algorithms,
and its availability is limited. In this paper, we propose an implementation method
of the NL-means algorithm on FPGA. In the NL-means, the cross correlations be-
tween the small windows are repeatedly calculated, and a large number of interme-
diate data have to be held temporarily to reduce the amount of its computation. In
our approach, the scan direction of the image is changed in the zigzag way. This
zigzag scan increases the computation time because of the recalculation on the scan
borders, but the required memory size can be drastically reduced. We have imple-
mented the circuit on a Xilinx FPGA, and showed that with a small size FPGA, its
real-time processing is possible.

1. Introduction

Noise reduction is the process of removing noise from an image. Non-Local means (NL-
means) algorithm is one of the powerful and robust noise reduction algorithms[1]. A
higher noise reduction ratio can be expected than Gaussian filter, Bilateral filter and so
on, and it is supported in a major library[2]. However, its computational complexity is
much higher than other denoising algorithms.

In NL-means algorithm, a search window is defined centered at the target pixel, and
for each pixel in the search window, a template window is considered. Then, using the
template windows, the cross-correlations between the target pixel and all pixels in the
search window are calculated. These cross-correlations are used to improve the value
of the target pixel. These cross-correlations can be efficiently calculated based on the
calculation method of the box filter, and high performance can be easily achieved on
FPGAs. However, for this efficient calculation method, large size memory is required,
which means a large FPGA with large on-chip memory is required, though only a small
amount of its logic cells are used.

We have proposed a memory efficient computation method of box filters[3]. This
work demonstrated that the cross-correlation of the windows in two images (left and
right images in the stereo vision) can be efficiently calculated with much less memory by
changing the scan direction. In this approach, the image is scanned in zigzag, not from
top-left to bottom-right. In [3], the processing speed was almost half of the top-left to
bottom-right scan (it can be controlled by changing the required memory size), but it was
still fast enough for real-time processing.

682 H. Koizumi and T. Maruyama / An Implementation of Non-Local Means Algorithm on FPGA

In this paper, we show that this approach works well for the calculation of the cross-
correlations in one image using NL-means algorithm as an example. In the NL-means
algorithm, the cross-correlations of the pixels in the square search window are calculated,
though in the stereo vision, those of the pixels on a line segment along the x axis are
calculated. This difference requires more line buffers, and more memory to store the
temporary data. However, as shown in this paper, our approach works well also in this
case, and the required memory can be reduced to 14% when the processing speed is half
of the top-left to bottom-right scan.

2. Non-Local Means Algorithm

In the Non-Local means algorithm, given an image I, the denoised image /%" is given as
follow.

p"="Y wip.q) q (1
q€Ws(p)

Here, p is a pixel in the image I, and p® is the denoised pixel of p. Ws(p) is a window
centered at p, called a search window of p, and ¢ is a pixel in Ws(p).

Let Wr(p) be a window centered at p, called a template window of p. Then, d(p,q),
the difference between the two template windows, Wr(p) and Wr(q), is defined as fol-
lows.

d(p,q) = |Wr(p) —Wr(q)||*)

Using d(p,q), w(p,q) is given as

1 d(p,
w(pd) = s expl= By 3
where o is a constant, and
d(p,r
M= ¥ en-150) @
reWs(p)

N(p) is used to normalize w(p,q).
Let p =1y y), 4 =1, y)> the size of the search window (2w + 1)2, and that of the

template window (2w, + 1)2. Then, equation (2) can be rewritten as follows.

d(l(x»)’)’l(%")) - Z Z HI(x—Q—dx,y—i—dy) 7I(u+dx, v+dy) ||2 (5)

dx=—w; dy=—w;
And, equation (1) can also be rewritten as

I&y): Y X Wl(x,y) Aerd, y+dy)) L(erdx, ydy) ©)

dx=—ws dy=—wy

Fig.1 shows the relation of the search window and the template window. In Fig.1,
P, the target pixel, is the center of the search window, and for each pixel ¢ in the search
window, d(p,q) is calculated using the pixels in their template windows.

The computational complexity of non-local means algorithm is given as follows.

H. Koizumi and T. Maruyama / An Implementation of Non-Local Means Algorithm on FPGA 683

P Wi 2wl | wy Caudu
template Window‘l_ T T T I I IT] L I |
1T TT T twe ! IBHHEHHEEE
A i mma H @O
- g i i HHtwt 15 @ 1o
-3 ‘V | \B -V -F-F ' i ol e el
- £ 1t 1& . 1| ~
_E o &1 I o el
Ws 4 —t——
-5 o ey & Ha (B)
3 . A v
) | y Wt v I:Il:l:l:l:l
= e L1) N RN R
| search window template window x-wi-1 x-1 X + X4+wWt

Figure 1. Search window and ~Figure 2. The Range of the Figure 3. Overlapping of
Template window Pixels Required for the Template windows
Calculation

1. The number of the pixels in the image is W x H, where W and H are the width
and height of the image.

2. For each pixel in the image, equation (6) is calculated. This means that equation
(5) is calculated (2w; + 1)? times.

3. In each calculation of equation (5), (2w, + 1)? distances are calculated.

Thus, the computational complexity of this algorithm becomes W x H x (2w + 1)% x
(2w, + 1)2, which becomes very large for high resolution images.

3. Scan direction and the Performance

In this section, we compare the processing speed and the required memory size by the
top-left to bottom-right scan and the zigzag scan[3]. Fig.2 shows how many pixels are
necessary for calculating p® for pixel p. In Fig.2, the black pixel is the target pixel p,
and the four gray pixels are the corner pixels of the search window. For calculating d()
for all pixels in the search window, (2w; + 2w, 4 1) pixels are required.

To simplify the discussion, we consider the calculation of only one d (I(x7 y) 7I(u,v))

though it is calculated for (2w + 1)? pixels in the search window in the NL-means algo-
rithm.

3.1. Top-left to bottom-right Scan

First, we describe an efficient calculation method of the NL-means algorithm when the
image is scanned from top-left to bottom-right. This calculation method is widely used
as the one for the box filter.
dn
Suppose that (1,

)

was calculated, and now dn
) (x,y

we focus on the calculation of d(l(x’ y),l(u’v)) shown in Fig.3. In the calculation of
Idn

(x717y)’
going to be calculated for IE’;’

(A) and (B) in Fig.3 can be shared in these calculations. Therefore, d (I(x y) ,I(u V)) can

) is going to be calculated. Here,

d(l(x—l,y)J(u—l,v)) was calculated (Fig.3 (A) and (a)), and d(I(x’y),I(mV)) is
y) (Fig.3 (B) and (b)). The differences of the gray pixels in

be calculated from d (I(x-1,y) ,I()) as follows.

u—1,v
e y) A ,w) =AUt y) K1) F

dy ey, y) L, v) = Q-1 y) dumw—1,0) - (D

684 H. Koizumi and T. Maruyama / An Implementation of Non-Local Means Algorithm on FPGA

[,
=
i3
&9
%%
x-2wt-1 x-wt-1 x-1 x X+wt 2.5 -———Wa 5 ———W
IIIIII-I-I-III > :
—— J] ‘
d(Ie2w-1,9),Jwawe 1,))__d(l(x Tww) L T
L prareduicl m REENES 53¢ ~o e et 1 .
I y-2we-1 ! ?
1 - . . —
T g it T
= _. |
SEEE : = z
0 f
. = y v y
T ST T
! E ‘
e - 3
:
| d(Ix-y),Ie-1w) [
' . LA
' I

X X

Figure 4. Calculation Method based on Figure 5. Memory usage in Top-left to
Box Filter Bottom-right Scan

where
Wy

ATy) = B Weyiay) ~ L vray) P ®)

Fig.4 illustrates this equation. By adding column A to d(l(x—l -t v)), and subtract-
ing column B, d (I(x.y),l(u v)) can be obtained as shown in Fig.4-left. Column B was
already calculated as column A of d (I(x—2w,—1) ’I(u—Zwt—l,v))’ and by keeping it for
2w; + 1 steps (blue arrow in Fig.4-left, because the image is scanned from top-left to

bottom-right), it can be reused as column B.

In the same way, dy (I(x y) ,I(u v)) can be calculated using the difference

dy (I(XJ) ’I(’h V)) =dy (I(x,y—l) 7I(M, v—l))"‘

2
|

HI(XJ‘*'Wt) 7I(M,V+Wr) - HI(X,yfwtfl) 7I(u,v7w,71) ||2)]

Fig.4-right illustrates this calculation. By adding

_ 2
a= ||I(x,y+w,) _I(u, v+w,)|| >
to dy (I(x,yfl)vl(u,vfl))’ and subtracting
b=||I
dy(I (x,y)’ I(u v)) can be obtained. Here, b was already calculated as a of dy (I(X, y-2w—1)>
Iy v72w,71))’ and by keeping it for (2w, + 1) X W steps, it is can be reused as b as shown
in Fig.5-left. In Fig.5-left, a (the red one) was calculated for dy (I(x7 y2wp-1)> I(u7 v—2w,—1)),
and by waiting (2w, + 1) x W steps, the focused pixel comes to (x,y + wy) by the top-
left to bottom-right scan (the blue dotted arrows), and the a can be reused as b of
d(l(x7y),l(u7 v))' In this calculation method, dy (I(x7y—l)’1(u7v—l)) (A in Fig.4) has to be
also kept for W steps as shown in Fig.5-right.
With this calculation method, d (I(x7 y),l(mv)) can be obtained by calculating only a
in Fig.4-right, if we can keep the following three values in the memory:

(x,y—we—1) — u V—Wy— H

1. dy (1(x+w,,y) ,I(u_i_whv)) for 2w; + 1 steps.

2. b=y, y2w,-1) _I(u7v—2wt—l)”2 for (2w, + 1) x W steps, and

H. Koizumi and T. Maruyama / An Implementation of Non-Local Means Algorithm on FPGA 685

¥ e @ T .2\)_"‘1'1,
: template : -
, window T f B
— ?
}r+2W>+2‘wl -> & ,,“;h'lduw ir : .
line buffers! ! | ¢ Fb | B
,,,,,,,, L] P 1
| ‘ T
2r+2wWsH2wi | pitiod 3 ! : =
) : A, A A—]
! ‘ f a |
I—\I image ir -
; o 12
Figure 6. Zigzag scan Figure 7. Memory usage in Zigzag
scan

3. dY(I(x,y—l)vl(u,v—l)) for W steps.

In case of NL-means algorithm, these three values have to be kept for all pixels in the
search window. Here, we ignore the first one, because its size is much smaller than the
last two. The required memory size to keep these values becomes

ws+1)2 x (2w, +1)+1) x W. (10)

In addition to this, 2wy line buffers are necessary to supply (2w + 1)? pixels in parallel.
The size of these memory is proportional to the image width W, and larger search window
(ws) and template window (w;) are required for higher resolution images. Therefore,
this approach is not feasible for high resolution images, though it gives the minimum
computational cost.

This computation method is widely used in many FPGA implementations, and has
achieved very high performance, but it is difficult to process high resolution images even
with the current largest FPGAs.

3.2. Zigzag scan

Fig.6 shows the outline of our zigzag scan. As shown in Fig.6, the image is divided
vertically into blocks ((1),(2),(3) and (4) in Fig.6), the height of each is . These blocks
are processed sequentially from top to bottom. Each block is scanned in zigzag as shown
in Fig.6 (in Fig.6, block (2) is being processed). The height of each block is r, but the scan
width is r 4 2w + 2w;. This is to include all pixels that are necessary for the calculation
of all template windows of the top and bottom pixels in the block (two black pixels in
Fig.6).

This approach has one advantage, and two disadvantages. First, we describe the two
disadvantages. As shown in Fig.6, the scan width for each block is 4 2w 4 2wy, but
by this scan, d() for only r pixels can be calculated. Thus, the computational efficiency

becomes
’

— (11)
r=+2wg + 2wy

which is apparently less than 1. Another disadvantage is the large memory size required
for the line buffers as shown in Fig.6. To allow the zigzag scan of width = r+ 2w+ 2wy,
r+2wg + 2w; line buffers are required. In addition to this, r line buffers are necessary

686 H. Koizumi and T. Maruyama / An Implementation of Non-Local Means Algorithm on FPGA

to buffer the data that are necessary for the next block while processing the pixels in the
current block. The total number of line buffers becomes 2r + 2w, + 2w;.

The advantage of our approach is less memory size to hold the temporary data. In
this scan method, dy (1 (x,y) v (u, v)) can also be calculated as shown in equation (9), but in
this case, the pixels are scanned vertically, and b in Fig.4-right can be obtained by holding
a only for 2w; + 1 steps as shown in Fig.7-left, though it has to be held for (2w, +1) x W
steps in case of the top-left to bottom-right scan. To the contrary, for the computation of
equation (7) shown in Fig.4-left, A has to be held for (r+2w;+2w;) x (2w, + 1) steps
as shown in Fig.7-right, though it has to be held only 2w, + 1 steps in case of the top-left
to bottom-right scan. The main memory usage in this zigzag scan is given by (ignoring
the ones used for dy (I(x,y) vI(u,v)))

2wy +1)% x (r+2ws +2w;) x 2w, +1). (12)

This size is not proportional to W, which means that we can control the memory size by
changing r, though the processing speed is also changed.

3.3. Comparison of the Processing Speed and Memory Size

The computational efficiently of the zigzag scan is given by equation (11). Its value can
be controlled by changing r, though it also affect the required memory size. However, it
is easy to keep this value larger than 0.5.
The ratio of the required memory size is given as follows.
(2ws+ 1)2 - (r42ws +2w;) - (2w + 1) + (2r + 2wy +2wy) - W
Cws+ D2 (2w + 1)+ 1) - W +2ws- W

The numerator is the one for the zigzag scan; equation (12) and the line buffers, and
denominator is the one for the top-left to bottom-right scan shown in equation (10) and
its line buffers.

In our current implementation, W = 640, w, = 1, wy = 3, and r = 8. With these
values of the parameters, the processing speed of our approach is 0.5 of the top-left to
bottom-right scan, and the memory size ratio is 0.14. For larger W, consequently larger
ws and wy, the processing speed is kept constant, but the memory size ratio becomes
smaller, if r is ¢ X wy (c is a constant).

Table 1 compares the required memory size and the processing speed of the zigzag
scan to those of the top-left to bottom-right scan when r is changed under the parameters
given above. As shown in this table, by changing r, the required memory size can be
changed in wide range. This makes it possible to choose the minimum size FPGA for the
required processing speed, and also to achieve the maximum performance on the given
FPGA by choosing proper r. To the contrary, in the top-left to bottom-right scan, the
memory size cannot be reduced for any processing speed.

In both scan methods, by processing n pixels sequentially on the same unit, the logic
cells can be reduced to 1/n. With this sequential approach, the processing speed is also
decreased to 1/n, but the memory size cannot be reduced in both scan methods. However,
in the zigzag scan, the required memory size is much smaller, and distributed RAMs
can also be used, though only block RAMs can be used in the top-left to bottom-right
scan because the memory depth must be W. This flexibility enables to achieve better
performance on wide range of FPGAs.

H. Koizumi and T. Maruyama / An Implementation of Non-Local Means Algorithm on FPGA 687

Table 1. Memory usage and computational efficiency

r 4 8 16 32 64
memory size 009 0.14 023 040 0.5
processing speed 0.33 0.50 0.67 0.80 0.80

. |5}
image £
e
=1
i 5
line buffers @
prew
(1)
selectors
(2)
e
]
]
] .)
- & [+ register array g
2 3
& 5> g
2 | g ?
1.8 -
S o] }
S le— i
L i
S [{
O e &
memory banks &
Sa prew 2
s
—]
i)

Figure 8. A Block Diagram Figure 9. Line Buffers

4. An Implementation on FPGA

In the NL-means algorithm, equation (5) is calculated for all (w; + 1)? pixels in the search
window. The processing speed can be controlled by changing the number of pixels that
are processed in parallel. By processing all pixels in parallel, the maximum performance
can be achieved. In our implementation, w, + 1 pixels are processed in parallel, and wy+ 1
clock cycles are used to process (ws + 1)? pixels. This approach is taken to reduce the
circuit size as much as possible while keeping the processing of 640 x 480 pixel images
faster than 30 fps.

4.1. Block Diagram

Fig.8 shows a block diagram of our system. First, the data are sent from the host com-
puter, and they are once stored in the line buffers for the zigzag scan. Then, the data
in the line buffers are read onto the register array through selectors. The equations de-
scribed in Section 3 are calculated using the values on the register array, and those from
the memory banks. In the memory banks, the values discussed in Section 3.2 are stored.

4.2. Line buffers and Register Array

Fig.9 shows the usage of the line buffers in our approach. In Fig.9(1), ws +w; +r+wy +
t + wy line buffers from the top are used for the current zigzag scan, and for the pixels in
r lines, NL-means algorithm is applied. This phase takes more than W X r clock cycles

688 H. Koizumi and T. Maruyama / An Implementation of Non-Local Means Algorithm on FPGA

I(u+1,v+1)
I(x+1,y+1)

I(u,v)
+1 N unit for |
T i:{é g oneplxeli
s 5
I)) 5
Lof o GG G [.
=z LOE [0 g P
52 LD 7| I: 3
g i DO\ O] D08 g
i ' =
! sl il
mjin [|C]
[2

Figure 10. Register Array
Figure 11. Calculation Units

even if all pixels in the search window are calculated in parallel. During this period, the
pixels of the next r lines are read into the line buffers "¢ for the next zigzag scan. Then,
the next ws +w; +r+w; 4+t + w; line buffers are used for the next zigzag scan as shown
in Fig.9(2), and the next r lines are read into the next line buffers " . In our current
implementation, r = 8, wy = 3 and w; = 1. Therefore, as shown in Fig.9, by repeating
three phases ((1),(2) and (3)), all lines in the image can be processed.

Fig.10 shows the register array. The data in the line buffers are fetched onto the
register array through selectors. As described above, only three phases are necessary for
the assignment of the line buffers, which means that only 3-to-1 selectors are required.
The register array consists of (r+2w; +2wy) X (2w; + 1) registers. In Fig.10, the black
pixel is the center of the search window. Then, the pixel r, the bottom-right corner pixel
of its template window, is compared with (2w + 1)? pixels, the gray ones in the figure.
As shown in Fig.10, only the values on gray registers are used for the calculations, and
other registers are used only for keeping the data. The registers in the right-most column
are used to get the data from the line buffers, and to give them to the register array.

4.3. Memory Banks

As described in Section 3.2, two kinds of memory banks are required. The first one is
to store a in Fig.7, and the another is to store A. The required depth for the first one is
2w; + 1. In our current implementation, w, = 1. Thus, a is held on the registers not in the
memory.

The required memory size for the second one is (2ws + 1)? x (r + 2wy + 2w;) x
(2w, 4 1). As described above, in our current implementation, (2ws 4 1)? pixels in the
search window are processed in 2w, + 1 clock cycles by processing 2w, + 1 pixels in
parallel. Thus, the required number of memory banks is 2w, + 1. In this case, for each
bank, the temporary data for 2w, + 1 pixel can be stored. This means that the depth of

H. Koizumi and T. Maruyama / An Implementation of Non-Local Means Algorithm on FPGA 689

the memory banks is (2w + 1) x (r+2w; +2w;) X (2w, + 1). This depth becomes 336
under the current parameters. Block RAMs configured as 512 x 72 can be used as this
memory.

4.4. Calculation Units

In our implementation, 2wy + 1 units are used, and each unit processes 2w + 1 pixels
sequentially using 2wg + 1 clock cycles. Fig.11 shows a block diagram of one unit for
processing one of 2w + 1 pixels. First, I(x+l,y+1) and I(u+1,v+l) are given (wy = 1),
and their distance is calculated. In Fig.11, the circuit only for one channel is shown,
though three channels for R, G and B are processed. Then, it is delayed for 2w, + 1
clock cycles twice (distributed RAMs are used), and three values are added to calculate
dy. In the discussion in Section 3, dy is calculated using the difference as shown in
equation (9), but in the current implementation, 2w; + 1 = 3, and the three values are
directly added. It is sent to the memory banks (as A in Fig.7), and another one is read
back from the memory banks (B in Fig.7). Their difference is added to the register that
holds d() to obtain its new value following equation (7). Then, one of the tables that hold

exp(fﬁzdyz) ~exp(fi—(2)) is looked up using d() (o, is a constant). The first term is a
d

weight considering the distance from the center of the search window. This weight is not

shown in equitation (3), but used in our current implementation. 7 = 2w, + 1 tables are

packed into one block RAM, and one of them is accessed according to the distance from

the center pixel. The size of each table is 256, which is large enough to obtain our target

PSNR. The output, and the product of the output and I(u’ y) are accumulated respectively.

Then, those values from 2w, + 1 units are added. The reciprocal of the sum of the output
is obtained by table look-up, and the final output obtained by multiplying them.

5. Experimental Results

We have implemented the circuit on Xilinx FPGA Kintex-7 XC7K160T. For this
implementation, 24.6K LUTs (24.3%), 63 block RAMs (19.4%) and 87 DSP slices
(14.5%) were used. The size of this circuit is small enough. Its operational frequency is
335.4MHz, and its processing speed is 78.0 fps for 640 x 480 pixel images. This pro-
cessing speed is 408X of the software on Core 17-860 2.8GHz.

Fig.12 shows the input image, the image in which noise is added, the output by
the original NL-means algorithm, and that by our system. The PSNR by the original
algorithm is 31.7dB, and that by our system is 28.0 dB. The PSNR by ours is a bit worse,
but it is higher than 25dB, and as reported in [6][7], visually, it is difficult to find the
difference. The operation data width is reduced to keep the PSNR higher than 25.0dB,
not to achieve the PSNR of the original algorithm. This is to reduce the circuit size as
much as possible while keeping the enough quality for human recognition.

6. Conclusions

We have implemented a circuit for Non-Local means algorithm on FPGA. To reduce the
memory size, the image is scanned in zigzag. With this scan method, the memory size
can be reduced to 14% of the top-left to bottom-right scan. Its processing speed becomes

690

H. Koizumi and T. Maruyama / An Implementation of Non-Local Means Algorithm on FPGA

original noise added

original nl-means our approach

Figure 12. Comparison of the output images

half of the top-left to bottom-right scan, but it is still 78 fps for 640 x 480pixel images,
which is fast enough for real-time processing.

The design based on this zigzag scan requires more effort than that for the top-left

to bottom-right scan. To develop a library to make it easier is one of main future work.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 18K11209, and the New Energy and
Industrial Technology Development Organization (NEDO).

References

(1]
(2]
(3]
(4]
[5]
(6]

(7]

Buades, Antoni, Bartomeu Coll, and J-M. Morel, A non-local algorithm for image denoising, CVPR,
2005.

https://docs.opencv.org/3.2.0/d5/d69/tutorial_py_non_local_means.html.

W. Sichao, and T. Maruyama, An implementation method of the box filter on FPGA, FPL, 2016.

Jin Wang, Yanwen Guo, Yiting Ying, Yanli Liu and Qunsheng Peng, Fast non-local algorithm for image
denoising, International Conference on Image Processing. 2006.

L. L. Gambarra, J. C. Pessoa et. al., Fast non-local image denoising using a hardware implementation,
‘Workshop on Circuits and System Design, 2012.

Thomos, Nikolaos, Nikolaos V. Boulgouris, and Michael G. Strintzis, Optimized transmission of
JPEG2000 streams over wireless channels, IEEE Transactions on image processing 15.1, 54-67. 2006.
Li, Xiangjun, and Jianfei Cai, Robust transmission of JPEG2000 encoded images over packet loss chan-
nels, IEEE International Conference on Multimedia and Expo, 2007.

