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Abstract. In this paper, we evaluate the performance, power consumption and its
variation and also thermal behavior of the DGX-2 server from Nvidia. We present
a development of specialized synthetic benchmarks to measure raw performance
of GPUs for single, double, half precision and also Tensor Core units. With these
benchmarks, we were able to reach peak performance and verify the specifica-
tion provided by Nvidia. We achieved 130.79 TFLOPS peak performance in half-
precision on Tensor Cores. We also measured the thermal stability of the DGX-2
system. It can hold its peak performance when all 16 GPUs are fully loaded except
Tensor Core workload, when thermal throttling occurred with with up to 1 % per-
formance penalty. During single-precision workload we observed 23 % variation
of the power consummation of individual GPUs installed in the system. Finally,
we have evaluated the behavior of the Tesla V100-SXM3 chip under the DVFS
tuning. Running at optimal frequency, the compute bound workload can save up
to 39% energy while the run-time increases by 51 %. More importantly, memory
bound workload can save up to 31 % with 2 % throughput penalty and during the
communication over NVLink one can save up to 26 % energy with no penalty.

Keywords. DGX-2, tensor core, performance analysis, energy efficiency, dynamic
voltage and frequency scaling (DVFS)

1. Introduction

In this paper, we evaluate the performance of the Nvidia DGX-2 system using a new
synthetic benchmark, designed to achieve and measure the peak performance of both
CPUs as well as Nvidia GPUs. For this paper, we have developed a new version of this
benchmark with support for Tensor Cores [1]. With our benchmark, we were able to
match V100-SXM3’s peak performance stated by Nvidia. In adition, we measured GPU
memory and NVLink throughput.

Research in related work is focused on different aspects of DGX-2 system. For
instance, Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking [2] is
more focused on the V100 GPU architecture. This work explores deeply the whole V100
memory hierarchy, including throughput and latency measurements. It also inspects native
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Volta instructions with issue latency measurements. Furthermore, Evaluating Modern
GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect [3] focuses on GPU
communication technologies. It analyses aspects like throughput, latency and topology of
different GPU interconnects that are used on several GPU servers, including the DGX-2.

The goal of this paper is to evaluate the thermal stability and GPU power consump-
tion. Moreover we performed dynamic frequency and voltage scaling (DVFS) for com-
pute bound, memory bound and communication workloads and stated the most efficient
configuration for these workload types. In the end we also evaluate power consumption
of the whole node.

1.1. DGX-2 platform description

The main focus of the DGX-2 server is to accelerate tasks in artificial intelligence.
However, it is well-suited to run any GPU or multi-GPU application. It contains 16 Tesla
V100-SXM3 GPUs interconnected with high speed NVLink interconnect [4]. It also
features a pair of Intel Xeon Platinum 8168 CPUs, 1.5 TB of memory and 30 TB of fast
NVMe SSD storage. The server can be equipped with either eight EDR Infiniband or
100 Gb Ethernet network cards. [5] The GPUs are spread across two trays, each containing
8 GPUs in two rows. Cooling fans are located at the start of the tray as shown in Figure 1.

Figure 1. Physical GPU layout of the DGX-2 server.

The V100-SXM3 GPU is equipped with 80 streaming multiprocessors (SMs) and
32 GB of HBM2 memory. Each SM consists of these processing units: 64 FP32 (float),
64 INT32 (32 bit integer), 32 FP64 (double precision) and 8 Tensor Cores (16 bit floating
point – half precision). [4]. The basic operation with 16 bit floating point data type – half
is performed on floating point units. It can also perform half2 vector operations and reach
double the performance of float.

GPUs on DGX-2 system are interconnected with hi-speed bus called NVLink in
version 2. Single NVLink-V2 link can provide 25 GBps throughput in single direction and
50 GBps in both directions. The system is also equipped with 12 NVSwitches. Each GPU
is connected to six of these switches with single NVLink-V2 link, providing 300 GBps
bidirectional peer-to-peer (P2P) throughput. [3]

The Volta architecture introduce Tensor Cores – processing units designed to per-
form fused multiply-add operation with 16× 16 half precision matrices. The result ac-
cumulation can be done either in half-precision or in single-precision. The programmer
can access mma sync() function which performs a warp level operation: every thread of
warp is participating in the matrix multiplication. [1]
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2. Measurement Methodology Description

2.1. Benchmarks

The Mandelbrot benchmark is designed to measure pure floating point performance of
the processor at very high arithmetic intensity. It executes the Mandelbrot iterations
zk+1,i = z2

ki+ci where z0i = 0 and the constants ci are from the Mandelbrot set of complex
numbers. The Mandelbrot iterations may be repeated indefinitely and remain bounded.
For simplicity and efficiency, we select the constants ci only from the numbers on the real
axis. The benchmark is implemented in CUDA PTX assembly code [6]. Each thread on
the GPU device is initialized with eight unique constants ci. We use 32 threads per block
and 12 blocks per streaming multiprocessor. After the initialization, all computation runs
in the registers only, avoiding any references to memory. The loop over k updates all
values of zki using FMA instructions. Further, the loop is unrolled 100 times, counting
800 consecutive fused mulitply-add instructions, in order to out-weight the loop overhead
of three instructions. The loop counter runs one million times to vastly outrun the clock
granularity and provide reliable performance measurements. The measurement may be
repeated number of times. The arithmetic intensity of the benchmark is 12.5×106 FLOP
per byte in double precision and up to quadruple of that in single and half precision.

The Mandelbrot benchmark may be naturally extended to matrix domain. In matrix
form, the square matrix Z is updated as Zk+1 = Zk ∗Zk +C, where the ∗ refers to matrix-
matrix multiplication, the matrix Z0 = 0 and the square matrix C has eigenvalues from
the Mandelbrot set. Such matrix iterations may be repeated indefinitely and the matrix
Z will remain bounded. It would be natural to use the matrix Mandelbrot iterations as a
load to benchmark the Tensor Cores. However the WMMA interface does not allow to
insert the output of the WMMA instruction as an input into the next WMMA instruction
directly due to the fact that the matrix fragments held by individual thread registers are
not identical for input and output matrices. Reusing the output registers as input registers
into the WMMA instruction introduces permutations into the matrix, in addition some
matrix elements are repeated and some are lost. Nevertheless, the l2 norm of the matrices
created in this way remains approximately correct. Recognizing that the reuse of the
output registers as input registers to WMMA instructions approximately conserves the l2
norm and using the property of sub-additivity and sub-multiplicativity of the l2 norm, we
are able to select the C as real valued, random matrices, taken such that their eigenvalues
lie well within the bounds of the Mandelbrot set and the matrix iterations remain bounded
indefinitely. Utilizing this result, we have implemented the matrix Mandelbrot benchmark
for the Tensor Cores, using the PTX WMMA instructions API [6]. The data are kept in
the registers only, the Z and C being 16 bit floating point 16× 16 matrices. Each block
is initialized to unique C matrix. The C matrices are pre-computed off the benchmark
code, by shifting and scaling a randomly generated square matrices. The block count,
loop unrolling and loop count remains the same as for the scalar version. The arithmetic
intensity exceeds millions of floating point operations per byte. The arithmetic intensity
of the matrix benchmark for the Tensor Cores is 1.6×109 FLOP per byte. [7]

The throughput of the memory subsystem was measured by STREAM [8] bench-
mark, modified for GPUs, also available at the GIT repository [7]. All functions of the
STREAM benchmark were measured: copy, scale, add, triadd. The throughput of NVLink
interconnect was measured by performing peer-to-peer (P2P) data transfer between two
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GPUs with cudaMemcpyPeerAsync() call. [9] The throughput was measured in single
direction as well as bidirectionally.

2.2. Frequency Scaling and Energy Measurement

To simulate compute bound workload, we took our Mandelbrot benchmark. On the other
hand, memory bound workload is represented by the STREAM benchmark. Furthermore,
measurement of P2P data transfer over NVLink was also performed. Energy measurement
and frequency scaling was performed using tools provided by Nvidia. To measure energy
consumption, the Nvidia Management Library – NVMLwas used. For the frequency scaling
and taking samples with power, temperature and frequency the nvidia-smi utility was
used. In this paper, we use the same methodology to measure energy efficiency as
described in the Green500 tutorial [10] with the exception that we use our Mandelbrot
benchmark to determine peak performance instead of Linpack benchmark.
NVML provides C-based programmatic interface for monitoring and managing Nvidia

GPUs. It is intended to be a platform for building third party applications. During the ex-
periments, NVMLwas used to access a total energy consumption counter for the GPU. This
counter can be accessed with nvmlDeviceGetTotalEnergyConsumption() function
call [11]. To measure energy consumed by certain workload the value of this counter was
read two times: right before launch and right after it finishes. Subtracting these values
yield energy consumed by the workload in mJ. Application initialization and cleanup is
not included in this measurement, only the main loop with the measured workload.

The Nvidia System Management Interface: nvidia-smi was used to collect power,
temperature and frequency samples to analyze power and thermal properties. These
samples were captured at approximately 100 Hz sampling rate. Furthermore this utility
was used to change frequency of GPUs. The frequency was decreased from 1597 MHz
to 675 MHz in approximately 7 MHz predefined steps. HBM2 memory frequency cannot
be tuned, thus staying at 958 MHz even when the card is idle.

3. Results

3.1. Performance

We have not found any peak performance numbers published for V100-SXM3 GPU used
in DGX-2 server. However, we were able to retrieve these numbers from Nvidia Profiler.
The performance of Tensor Cores is not stated for this version of V100 GPU. V100-SXM2
revision has Tensor Core peak performance of 125 TFLOPS in the half-precision, running
at 1530 MHz [4]. If we scale up this number to match SXM3’s 1597 MHz, we should
be getting 130.484 TFLOPS in half-precision. Global memory bandwidth is according to
Nvidia Profiler 980.992 GBps. NVLink’s unidirectional P2P throughput is 150 GBps and
300 GBps in both directions. Results of Mandelbrot benchmark, STREAM benchmark
and NVLink P2P transfer benchmark are shown in Table 1.

3.2. Power and Thermal Properties

The physical layout of the DGX-2 server causes that cold air is not distributed equally
among all the GPUs. The GPUs are placed in two trays, where each tray contains 8 GPUs
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Mandelbrot benchmark

Specification
[TFLOPS]

Measurement
[TFLOPS]

double 8.177 8.1765
float 16.353 16.3530
half2 32.707 32.7038
tensor 130.484 130.7928

STREAM benchmark

Throughput
[GBps]

copy 825.473
scale 826.518
add 873.631
triadd 872.368

NVLink P2P transfer

latency 2.45 us
unidirectional 145.16 GBps
bidirectional 266.46 GBps

Table 1. Table on the left compares performance measured by Mandelbrot benchmark to the performance
specified by Nvidia. Table in the middle shows memory throughput measured by STREAM benchmark. Table
on the right shows the result of P2P data transfer over NVLink interconnect.

in two rows. High-RPM cooling fans are located at the beginning of these trays. GPUs
placed in the first row are facing these fans directly and receive cold air, while GPUs in
the second row receive air that has been already heated by the GPUs in the first row.

In general, this causes that GPUs in the second row run at higher temperature than
the ones in the first row. This also means that they can reach their TDP of 350 W when
they are under the full load and thermal throttling must be performed, which results in
performance imbalance among the GPUs. Figure 2 shows how GPUs in the first row
influence GPUs in the second row by running Mandelbrot benchmark on Tensor Cores
for 4 minutes on all 16 GPUs one by one.

Figure 2. Temperature of all GPUs when fully loaded with Tensor core benchmark one by one. Each GPU was
loaded for approximately 4 minutes. GPU in the first row (0, 1, 4, 6, 8, 9, 12, 13) increases also temperature of
the GPU located directly behind it in the second row (2, 3, 5, 7, 10, 11, 14, 15).

When running Tensor Core Mandelbrot benchmark on all 16 GPUs at once, GPUs
in the front row reach a maximum temperature of 57 ◦C while GPUs in the second
row peak is 72 ◦C. During this benchmark, certain GPUs from the second row tend to
throttle down their frequencies to as low as 1575 MHz (from the maximum 1597 MHz)
causing approximately 1 % performance loss, see Figure 3. It shows that running the
same Mandelbrot benchmark on all the GPUs results in significant variation in power
consumption of individual GPUs, reaching up to 23 % for single precision version. This
is caused by both their location in the server as well as their manufacturing variations.
We can also observe that for single precision, double precision and Tensor Core version,
when some GPUs reach the TDP, they under-clock their frequencies.
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Figure 3. Power consumption variation of all the GPUs in the DGX-2 when under full load using compute
bound workload with four different data-types. The variation for the single-precision workload is up to 23%.

3.3. Frequency Scaling

To determine whether we can get better energy efficiency of the Tesla V100-SXM3, we
have performed the DVFS tuning test for compute bound, memory bound and NVLink
workloads. The first frequency scaling test was performed for all the data types of the
Mandelbrot benchmark (float, double, half2, tensor). Benchmark in each data type per-
formed the same amount of the floating-point operations: 81920× 109. The frequency
was scaled from 1597 MHz to 675 MHz in approximately 7 MHz steps. Each frequency
step was measured 6 times and average value is reported. Heat up runs were performed
before the actual measurement.

Figure 4 shows the result of the frequency scaling. The two bottom plots display the
same data in logarithmic scale as the top two plots in linear scale. Table 2 compares runs
at base frequency 1597 MHz with the runs at the most energy efficient frequency for each
workload type.

In general, the most efficient frequency for Mandelbrot benchmark is 1057 MHz.
Running at this frequency we can save up to 39 % of the energy while the run-time
will increase by 51 %. Interesting number to point out is the energy efficiency of double
data type. Running at base frequency it achieves 24.8 GFLOPS/W whereas running at
1050 MHz the efficiency reaches 40.67 GFLOPS/W. This efficiency number is getting
close to 50 GFLOPS/W, which is the limit for building exascale system with 20 MW
power consumption [12]. On the other hand, the peak performance at this frequency is
only 5.37 TFLOPS which is 66 % of the original 8.17 TFLOPS.

The second frequency scaling test was done using the STREAM benchmark. During
this experiment each workload transferred the same amount of data: 7.924 TB. Each fre-
quency step was measured 6 times and average value is reported. Before the measurement
started heat up runs were performed.

The results of the frequency scaling of the STREAM benchmark are shown in the
Figure 5. The peak throughput achieved during this experiment is lower than in the
subsection 3.1, because we were measuring the average throughput and not the best case
like the original STREAM does. Furthermore, the Figure 5 also shows a staircase shape
when the frequency is lower than 1 GHz. This is probably caused by the GPU having
certain memory operation modes. These modes do not match the granularity of which the
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Figure 4. Frequency scaling of Mandelbrot benchmark. Plot in the top left corner shows consumed energy and
run-time of workload. Plot in the top right corner shows energy efficiency. The two plots at the bottom display
the same data in logarithmic scale.

Frequency
[MHz]

Time
[s]

Time
difference

Energy
[J]

Energy
savings

Performance
[TFLOPS]

Energy efficiency
[GFLOPS/W]

double
1597 10.02 3303 8.17 24.80
1050 15.25 152.16% 2015 39.01% 5.37 40.67

float
1597 5.01 1596 16.34 51.33
1057 7.57 150.99% 982 38.50% 10.82 83.46

half2
1597 2.51 870 32.69 94.18
1057 3.78 151.05% 531 38.97% 21.64 154.30

tensor
1597 0.63 219 130.65 374.90
1057 0.95 151.04% 132 39.58% 86.50 620.51

Table 2. Mandelbrot benchmark running at base frequency compared to the most efficient frequency for each
workload.

streaming multiprocessor can change its frequency. The result of the energy consumption
for base frequency and the most efficient frequency is shown in Table 3. On average, up
to 31 % of the energy can be saved by scaling down to 1005 MHz. By doing that, the
transfer time increased by 2 % which is almost identical in compare to the data transfer
at the base frequency.

The last frequency scaling experiment was done for unidirectional P2P data transfer
over NVLink. The amount of transferred data was 859 GB. One frequency step was
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Figure 5. Frequency scaling of the STREAM benchmark. Plot on the left shows consumed energy and
throughput. Plot on the right shows the energy efficiency.

Frequency
[MHz]

Time
[s]

Time
difference

Energy
[J]

Energy
savings

Throughput
[GBps]

Energy efficiency
[GBps/W]

copy
1597 10.17 1561 779.12 5.08
1012 10.35 101.78% 1074 31.18% 765.47 7.38

scale
1597 10.10 1566 784.43 5.06
1005 10.30 101.99% 1064 32.02% 769.14 7.45

add
1597 9.30 1503 852.27 5.27
1005 9.67 104.02% 1044 30.49% 819.31 7.59

triadd
1597 9.52 1487 832.54 5.33
1005 9.71 101.98% 1021 31.36% 816.40 7.76

Table 3. STREAM benchmark running at base frequency compared to the most efficient frequency for each
workload.

measured 10 times. Figure 6 shows the result of this experiment. Running at 1140 MHz
can save up to 26 % energy without any throughput penalty. The throughput starts to drop
when the frequency decreases from 1140 MHz. In addition, the staircase shape similar to
Figure 5 can be seen. Table 4 shows the most efficient frequency for source and receive
device and compares it to the base frequency.

Frequency
[MHz]

Time
[s]

Time
difference

Energy
[J]

Energy
savings

Throughput
[GBps]

Energy efficiency
[GBps/W]

SRC DEV
1597 5.93 563 144.90 1.51
1110 6.19 104.34% 421 25.22% 138.88 2.04

RCV DEV
1597 5.93 569 144.90 1.53
1140 5.94 100.15% 417 26.71% 144.69 2.08

Table 4. NVLink P2P transfer benchmark running at base frequency compared to the most efficient frequency
for source device and receive device.
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Figure 6. Frequency scaling of the NVLink P2P transfer benchmark. Plot on the left shows consumed energy
and throughput. Plot on the right shows the energy efficiency.

3.4. Overall power consumption of DGX-2 server

To supplement the overall picture of DGX-2 efficiency, we also need to look at the energy
consumption of the server as a whole. Unfortunately, we measured these numbers only
with one power sample because the administrative privileges are needed to retrieve them.
Nevertheless, they can give some idea about the efficiency and power consumption of the
whole node including all peripherals and cooling. These power consumption numbers
were retrieved using ipmitool utility.

When idle, the DGX-2 consumes 2340 W, GPUs altogether consumes 768 W. When
loaded with Tensor Core Mandelbrot benchmark at 1597 MHz, the consumption rises to
7254 W whereas GPUs alone consume 5340 W. When running the same benchmark at
1057 MHz, the whole node consumption drops to 4056 W and GPUs consume 2248 W.

When running double precision Mandelbrot benchmark at base frequency GPUs
consume 4936 W and the whole node 6708 W. At this frequency the server reaches
130.8 TFLOPS, meaning the performance per watt reaches 19.52 GFLOPS/W. When we
scale down the frequency to 1057 MHz, GPUs alone consume 2116 W. Consumption
of the whole node drops to 3666 W. As a result, the DGX-2 can achieve efficiency of
23.60 GFLOPS/W at this frequency but the performance drops to 86.4 TFLOPS.

4. Conclusion

We have developed a set of benchmarks to determine the raw performance of GPUs in
the Nvidia DGX-2 server. We verified that performance numbers of V100-SXM3 GPU
are according to specification. We were able to reach 130.79 TFLOPS in half precision
using Tensor Cores on a single GPU. When running full load on all 16 GPUs at the
same time, some of the GPUs may thermal throttle by 1 % due to an uneven cooling
solution and manufacturing variations. We observed 23 % variation in power consump-
tion fo GPUs when running float Mandelbrot benchmark. To get the best performance
per watt out of V100-SXM3 GPU, it makes sense to scale down the frequency. For
compute bound workload the most efficient frequency is 1057 MHz making 39 % en-
ergy savings while run-time is increased by 51 %. The energy efficiency achievable for
double precision workload is 40.67 GFLOPS/W whereas running at base frequency is
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only 24.8 GFLOPS/W. Memory bound workload has its sweet spot at 1005 MHz. At
this frequency, the throughput penalty is only 2 % while energy savings can reach 31 %.
Peer-to-peer transfer achieves the best energy efficiency at 1140 MHz frequency, being
able to save 26 % energy without any throughput penalty. The whole DGX-2 node in
the idle mode consumes 2.3 kW of power. When all 16 GPUs are loaded with double
precision workload, the consumption increases to 6.7 kW with 19.52 GFLOPS/W energy
efficiency. However, running the same workload at 1057 MHz it consumes 3.6 kW, having
the energy efficiency 23.60 GFLOPS/W.
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