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Abstract.
The aim of this work is to quantitatively evaluate the impact of computation on

the energy consumption on ARM MPSoC platforms, exploiting CPUs, embedded
GPUs and FPGAs. One of them possibly represents the future of High Performance
Computing systems: a prototype of an Exascale supercomputer. Performance and
energy measurements are made using a state-of-the-art direct N-body code from
the astrophysical domain. We provide a comparison of the time-to-solution and
energy delay product metrics, for different software configurations. We have shown
that FPGA technologies can be used for application kernel acceleration and are
emerging as a promising alternative to “traditional” technologies for HPC, which
purely focus on peak-performance than on power-efficiency.
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1. Introduction and motivation

Energy efficiency is one of the main problems for exascale computing systems, since
simply re-scaling the current petascale systems would require an unfeasible amount of
power consumption. A re-design of the underlying technologies (i.e., processors, inter-
connect, storage, and accelerators) is needed to reduce energy requirements by about one
order of magnitude [1]. To exploit the upcoming new architectures, software developers
are forced to face the challenge of re-designing algorithms.

Commodity single board platforms are an interesting case of heterogeneous systems
for performance and energy-efficiency studies (e.g. [2,3,4,5]). They are based on low-
power System-on-Chip (SoC) architectures with embedded CPUs, GPUs, FPGAs, mem-
ory, storage and general purpose I/O ports. Many companies are delivering single-board
computers equipped with different hardware components and utilize Multi-processing
System-on-Chip (MPSoC) where the energy efficiency is the main concern.
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This work arises in the framework of the ExaNeSt and EuroExa European funded
projects aiming at the design and development of a prototype of an exascale HPC facil-
ity based on ARM SoC and FPGA technology [9,13]. Our goal is to study the trade-off
between time-to-solution and energy-to-solution using real code, a direct N-body solver
for astrophysical simulations, instead of benchmarking these machines by means of stan-
dard suites (e.g. HPL [14], DGEMM, STREAM [15]). We assess the performance and
the associated power-efficiency across different platforms, namely, the MPSoC Firefly-
RK3399 produced by Rockchip, and the Zynq-7000 SoC and Zynq UltraScale+ MPSoCs
both produced by Xilinx. We further compare these results with a commodity architec-
ture based on an x86 Intel desktop equipped with a high-end gaming GPU.

To the best of our knowledge, this work provides the first comprehensive evaluation
of a real application, coming from the astrophysical domain, on low-cost and low-power
boards hosting ARM (64 bit) mobile-class cores, embedded GPUs and FPGAs.

The paper is organized as follows. In Section 2 we describe the code and discuss
strategies in order to optimize algorithms on heterogeneous platforms. In Section 3 we
present the computing platforms used in the test. Section 4 is devoted for the discussion
of the methodology adopted to make the performance and energy tests. In Section 5 we
present the performance measurements for all platforms along with the power consump-
tion. The last section is dedicated to the conclusions and future work.

2. N-body astrophysical code

In astrophysics, the N-body problem is the problem of predicting the individual motions
in a group of celestial objects interacting with each other gravitationally. The main draw-
back related to the direct N-body problem relies on the fact that the algorithm requires
O(N2) computations. Our application, called HY-NBODY, a modified version of a GPU
N-body code [6,7], is based on high order Hermite integration schema [8] and has been
developed in the framework of the ExaNeSt project [9]. HY-NBODY has been designed
to fully exploit the compute capabilities of heterogeneous platforms. Three versions of
the code are available: one written in Standard C, cache-aware designed for CPUs, one
that is implemented and optimized using OpenCL kernels, allowing us to exploit any
OpenCL-compliant device (e.g. GPUs), and one that is written also in Standard C using
Xilinx Vivado High Level Synthesis (HLS) tool and is implemented for FPGAs.

Code profiling shows that, during a single time step of the simulation, more than
90% of time is spent on a single kernel with an arithmetic intensity I ' 104 [FLOPs/byte]
(ratio of FLOPs to the memory traffic), using 323 particles. In the following, time and
energy measurements on a given device refer to this compute-bound kernel.

2.1. Floating point arithmetic considerations

The Hermite 6th order integration schema requires double precision (DP) floating-point
arithmetic in the evaluation of inter-particle distance and acceleration in order to mini-
mize the round-off error, so as to preserve the total energy and the angular momentum of
the N-body system during the simulation.

Full IEEE-compliant DP floating-point arithmetic is efficient in contemporary
CPUs, but it is still extremely resource-eager and performance-poor in other accelerators
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like gaming or embedded GPUs. As an alternative, the extended-precision (EX) (or emu-
lated double precision) numeric type [11] can represent a trade-off in porting HY-NBODY

on devices not specifically designed for scientific calculations. An EX-number provides
approximately 48 bits of mantissa at single-precision exponent ranges.

3. Computing platforms

In this section we describe the four computing platforms used in our tests. Table 1 lists
the devices present in each computing platform, and we highlight in bold the devices
used in our tests. The platforms are:

• Firefly-RK3399 board: it is equipped with the ARM big.LITTLE architecture,
four Cortex-A53 cores with 32KB L1 cache and 512KB L2 cache, and a cluster
of two Cortex-A72 high performance cores with 32KB L1 cache and 1MB L2
cache. Each cluster operates at independent frequencies, ranging from 200MHz
up to 1.4GHz for the LITTLE, and up to 1.8GHz for the big. The board contains
4GB DDR3 - 1333MHz RAM. The board contains also the OpenCL-compliant
Mali-T864 embedded GPU;

• x86 desktop: it is equipped with four Intel i7-3770 cores running at 3.4 GHz with
32KB L1 cache, 256KB L2 cache and 8192KB L3 cache. The board contains
16GB DDR3 - 1866 MHz RAM and the NVIDIA GeForce-GTX-1080 GPU in the
PCI Express (16X) bus;

• ZedBoard: it is equipped with the Xilinx Zynq 7000 MPSoC, with dual-core ARM
Cortex-A9 processors integrated with 28nm Artix-7 based programmable logic
(FPGA). The board contains 512 MB DDR3 RAM;

• QFDB: the Quad-FPGA DaughterBoard (QFDB) is the compute-unit of the pro-
totype developed within the framework of the ExaNeSt project [9,10]. The com-
pute board, whose block diagram is shown in Figure 1, contains four Xilinx Zynq
UltraScale+ MPSoC devices (ZU9EG), each featuring four Cortex-A53 and two
Cortex-R5 cores, along with a rich set of hard IPs and Reconfigurable Logic. A
16GB DDR4 RAM is connected to each Zynq device. The maximum sustained
power of the board is 120 Watts. Targeting a compact design, the dimension of the
board is 120-130mm while no component on top or below the printed circuit board
(PCB) is taller than 10mm. The PCB stackup consists of 16 layers, with Megtron-
6 dielectric. Within the board, multiple high-speed serial links (HSSLs) connect
the four Zynq devices, each operating at a line rate of 16.375Gbps. One of the
Zynq devices is connected to the outside world through 10 high-speed serial links
(HSSLs) using GTH transceivers. On each QFDB, the measurement of the power
consumption is accomplished by using a set of TI INA226 current/power sensor,
coupled with high-power shunt resistors. The INA226 sensor’s minimal capture
time is 140µs. However, the Linux INA drivers (and the power-on set-up) set the
capture time to 1.1ms by default. The Linux driver also enables averaging from
16 samples and captures both the shunt and the bus voltages. To collect data from
the sensors, each board includes 15 I2C power sensors, which allow measuring the
power consumption of the primary sub-systems of the board.
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Table 2 shows the clock, the theoretical peak performance in FP64/FP32 and the
achieved performance of the devices using DP/EX arithmetic. Since FPGAs do not have
a fixed architecture, a generic way to calculate their peak performance does not exist for
the following reasons:

(i) each type of calculation needs a different amount of resources to be implemented;
(ii) a single type of calculation can be implemented in various ways;

(iii) the FPGA can operate with various clock frequencies;
(iv) usually an accelerator takes a part of the FPGA and not the entire FPGA (even a

design of 90% utilization is very difficult to be placed and routed and it becomes
even more difficult in higher clock frequencies).

Thus, in Table 2, regarding the FPGAs, we present the theoretical performance of
the implemented kernels versus the actual performance obtained including the latency of
the memory I/O and the time needed to handle the kernels from the software application.

Table 1. The platforms and the associated devices. The devices exploited in the test are highlighted in bold.

Platform CPU GPU FPGA

Firefly-RK3399 ARM A53x4 + A72x2 ARM Mali-T864 None

Desktop Intel i7-3770x4 NVIDIA GeForce-GTX-1080 None

ZedBoard ARM A9x2 None Zynq-7000

QFDB 4x(ARM A53x4 + R5x2) 4x(ARM Mali-400) 4x(Zynq-US+)

Table 2. The clock, the theoretical peak performance and the achieved performance of the devices tested in
this work. The actual performance has been obtained using 65536 particles.

Device i7x4 A53x4 A72x2 GTX-1080 T864 Z-7000 Z-US+

Clock (GHz) 3.40 1.42 1.80 1.733 0.800 0.100 0.300

Peak FP64/FP32 (GFLOPS) 108/217 11.36/45.44 7.2/28.8 277.3/8873 32/109 8.5/39.1 102/351.9

Actual DP/EX (GFLOPS) 8.0/4.1 2.6/2.6 3.0/2.6 55.2/4984 1.5/14.4 1.2/4.9 95.3/333.1

4. Methodology

In this section we discuss how power measurements were made. On the first three plat-
forms, namely, the Firefly-RK3399, the desktop and the ZedBoard, the electric power
draw is measured by means of a power meter (Yokogawa WT310E), while on the QFDB
it relies on the on-board sensors.

After booting up the platform, we measure the watt-hours consumed in idle during
a period of three minutes (∆T3), giving us the Ebaseline of the system. Then, Edevice

baseline is
the electric power drawn by the system running a given code implementation using a
particular device (CPU, GPU or FPGA) over ∆T3.

The energy-to-solution of the specific device is:
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Figure 1. The Quad-FPGA daughterboard block diagram and interconnects.

Edevice
impl =

(
Edevice

baseline−Ebaseline

)
·
(

T device/∆T3

)
, (1)

where T device is the kernel running time (time-to-solution averaged over ten runs). We
point out that the benchmark runs have been done taking into account the output to the
main memory, as happens in real production runs.

We also estimate the total energy impact of the application in terms of Energy Delay
Product (EDP), as suggested by Cameron [16], and defined as:

EDP = Edevice
baseline ·

(
T device/∆T3

)w
, (2)

where w is a parameter to weight performance versus power (usually w = 1,2,3). The
EDP is a “fused” metric to evaluate the trade-off between time-to-solution and energy-
to-solution.

5. Computational performances and energy consumption

First we investigate the time-to-solution running the code varying the number of par-
ticles. In the case of CPUs, we exploit all the available cores by means of OpenMP
threads. On the Firefly-RK3399 board equipped with the big.LITTLE ARM architecture,
we pinned the processes first to the four cores of the Cortex-A53 and then to the two
cores of the Cortex-A72. Kernel execution times on GPUs, both Nvidia-GeForce-GTX-
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Figure 2. Time-to-solution in seconds for different devices as a function of the number of particles for dou-
ble-precision arithmetic.

1080 and ARM Mali-T864, have been obtained using the OpenCL’s built-in profiling
functionality, which allows the host to collect runtime information, while in the case of
QFDB the kernel was executed only on a single FPGA out of the four it comprises.

In Figure 2, we compare the time-to-solution for the devices reported on Table 1
for DP arithmetic. From a pure performance point of view, regarding the DP arithmetic,
the Zynq UltraScale+ FPGA and the Nvidia GPU are the most powerful devices, while
the FireFly MPSoC and the Zynq-7000 FPGA performances are almost two orders of
magnitude lower.

To better study the effect of the extended-precision arithmetic, in Figure 3 we show
the ratio of time-to-solution between DP and EX arithmetic. The performance improve-
ment is a factor of∼ 2 for the Mali-T864 GPU and∼ 20 for the GTX-1080, while CPUs
suffer a significant performance degradation. Regarding the QFDB, the EX kernel shows
a 32% degradation in performance compared to the DP implementation. Although single
precision arithmetic requires less FPGA resources overall, the extra calculations (in par-
ticular accumulations) needed to minimize the roundoff and overflow errors in the inter-
mediate results of EX precision introduce an additional overhead which impacts the size
of the kernel that can be implemented inside the FPGA. Thus, although the EX kernel
was designed to execute on ∼ 25% less particles per cycle, because of these extra calcu-
lations it occupies 10% and 8% more in terms of DSPs and LUTs accordingly compared
to the DP implementation.

Figure 4 shows the total energy-to-solution (Edevice) for all devices and for both DP
and EX arithmetic using 65536 particles. For CPUs and GPUs, the instantaneous power
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Figure 3. The ratio of the time-to-solution between DP arithmetic and EX arithmetic as a function of the
number of particles for different devices.

consumption is pretty much the same running the DP or EX kernel implementation,
however using EX arithmetic on GPUs leads to better energy-efficiency because of the
reduced time-to-solution. Our findings show that the Zynq UltraScale+ FPGA is more
energy-efficient than the GTX-1080 by a factor of 15 when using DP arithmetic.

Moreover, we obtain EDP, for w = 1,3, when running the application using 65536
particles and with the methodology discussed in Section 4. In Figure 5 we plot the EDP
comparing the devices (top panel for w = 1, and bottom panel for w = 3). When perfor-
mances are highly valued (i.e. w = 3), the GTX-1080 is the device with the best trade-off
between time-to-solution and energy-to-solution using EX arithmetic, while the Zynq
UltraScale+ FPGA is favorable in terms of energy and execution time when DP floating-
point arithmetic is used.

6. Conclusions and future work

The energy footprint of scientific applications will become one of the main concerns
in the HPC sector. In this work we employ a real scientific application, coming from
Astrophysical domain, to explore the impact of software design on time-to-solution and
energy-to-solution using low-cost MPSoC-based platforms and FPGA-based technolo-
gies that can be potentially used in future HPC systems.

Due to the computational intensive nature of our application, accelerators, like GPU
and FPGA, outperform CPU peak performance, as expected. In particular, the introduc-
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Figure 4. The energy-to-solution of the specific device is shown.

tion of the emulated-double precision improves the application performance on SoCs
with embedded GPUs, like the ARM Mali, opening the path for successful and cost-
effective use of such devices in HPC.

The crucial findings of this work are the achieved performances, both in terms of
time-to-solution and energy-to-solution, exploiting the Zynq UltraScale+ FPGA on the
ExaNeSt QFDB prototype. Kernel development for FPGAs is slightly different than tra-
ditional GPU development in that the hardware is created for the specific functions be-
ing implemented. Understanding the difference between SIMD parallelism and pipeline
parallelism employed on FPGAs, and taking advantage of FPGA features, such as het-
erogeneous memory support, channels, loop pipelining and unrolling, are key factors to
unlock high performance-per-watt solutions.

In conclusion, we have shown that SoC technology is emerging as a promising alter-
native to “traditional” technologies for HPC, which purely focus on peak-performance
rather than power-efficiency. The main drawback is that programmers of scientific ap-
plications will have to re-engineer their code in order to fully exploit new computing
facilities based on heterogeneous hardware.

Our future plan is to assess the energy footprint of the HY-NBODY application on
a cluster of MPSoCs, hosting CPUs, GPUs and FPGAs, and to compare it with HPC
resources, where multi-node communication becomes an important aspect of the appli-
cation.
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Figure 5. EDP for DP arithmetic and for EX arithmetic varying the device. Top panel for w = 1, and bottom
panel for w = 3.
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