
GPU Acceleration of Four-Site Water

Vsevolod NIKOLSKIY a,b,1, Vladimir STEGAILOV a,b

a National Research University Higher School of Economics
Moscow, Russia

b Joint Institute for High Temperatures of Russian Academy of Sciences
Moscow, Russia

Abstract. In this work, a new algorithm was developed for calculating the four-
point water model TIP4P on graphics accelerators. It was designed as a part of the
flexible molecular dynamics modeling package LAMMPS in the library module
“GPU”. In this paper we describe two approaches to implement the TIP4P model
for GPU: 1) to divide the related computations between CPU and GPU; 2) to com-
pute the interaction fully on the GPU. We verify the program, benchmark and pro-
file it. The achieved speedup of interaction computation is about x7, acceleration
of the entire calculation of about 55%.

Keywords. TIP4P, LAMMPS, atomistic modeling, accelerator, empirical potential

1. Introduction

Molecular dynamics is an extremely powerful tool in modern science. It is used in a wide
variety of fields, including materials science, biology, theoretical physics, and many oth-
ers. Engaged in the multiscale approach, molecular dynamics is necessary for parame-
terization of next-order models.

In the development of the method, two main directions can now be distinguished.
First, the development of new physical models to expand the boundaries of the applica-
bility of the method or to obtain more accurate results. Modern MD packages already
include a huge number of implemented models and calculation methods, assembling
which, as a constructor, and correctly configuring, one can make discoveries in the sub-
ject area.

Secondly, this is the development of the computational capabilities of the already
described physical models. The fact is that molecular dynamics is an extremely resource-
intensive method that requires tremendous computing power to build complex and large
models. From the very first works, MD relies on the development of the computer indus-
try.

Nowadays, the period of extensive development of supercomputer technologies has
exhausted itself, and increasingly sophisticated technologies are applied to further in-

1Corresponding Author: Vsevolod Nikolskiy, International Laboratory for Supercomputer Atomistic
Modelling and Multi-scale Analysis NRU HSE, 34 Tallinskaya Ulitsa, 123458, Moscow, Russia; E-mail:
vnikolskiy@hse.ru

Models in LAMMPS

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200086

565

H H

O
m
�

b b

Figure 1. Rigid four-point water model TIP4P. H - hydrogen, O - oxygen, b - bonds and Theta is the angle.
The particle “m” represents the virtual massless charge.

crease computing power, requiring efforts from software developers and users for the
most efficient use. In addition, an increase in the universality of solutions and the pos-
sibility of code reuse is in demand, since otherwise the frequent change of the most rel-
evant hardware inevitably leads to the need for routine support of an increasingly large
code base of scientific packages.

In this work, we implement the well-known TIP4P water model for use on GPU
accelerators as part of the popular LAMMPS package. The code can be compiled with
CUDA and OpenCL backends due to the use of library. This approach allows us to in-
crease the efficiency of use of computer resources because heterogeneous architectures
are ubiquitous on modern supercomputers. On the other hand, our code does not du-
plicate, but effectively uses the huge number of features of the LAMMPS package for
implementing molecular dynamics methods and their parallelization.

The further text will be organized as follows: in Section 2 we consider several related
works, some of which we rely on during the development of this project. In Section 3, we
describe two approaches that were created in the process of solving the problem posed
in the project. Section 4 includes verification and performance testing of the developed
code. The last Section 5 is the conclusion.

2. Related Work

It may seem that the most natural way to model water is to specify all or some of the
three atoms that make up the water molecule as van der Waals and Coulomb interac-
tion points [1]. In some cases, such a simple model is enough, but it is shown that the
use of the fourth virtual massless charge point on the bisector of the H-O-H angle (Fig-
ure 1) significantly improves the electrostatic properties of the model. With the correct
parameterization, such a model has wide applicability limits [2,3]. TIP4P water model
in LAMMPS can be used as a basis of centroid molecular dynamics (CMD) quantum
simulations to consider the effects of zero point energy and tunnelling [4].

There are GPU implementations of water models (TIP4P including) in GRO-
MACS [5] and OpenMM [6], but these software tools are focused on biomolecular and
soft matter models. The LAMMPS package has the greatest flexibility; it includes the
largest number of potentials and possibilities for combining and extending methods. It
includes the TIP4P water model for computing on the CPU in several versions — short
ranged “cut” version and long-ranged with KSPACE computation [7] (Particle-Particle
— Particle Mesh method). They are labeled as lj/cut/tip4p/cut and lj/cut/tip4p/long with

V. Nikolskiy and V. Stegailov / GPU Acceleration of Four-Site Water Models in LAMMPS566

��

������	
�� ��	������	
��											�����	���

�������
��	

��

�������

��
��	
��

��������

��

������	������	 ��

��������

��������

��!�	���

���"��

������	������	#��$	

��	
������

Figure 2. Geryon library used in LAMMPS allows one to compile the same code with both CUDA or OpenCL
backends by preprocessing.

pppm/tip4p, respectively. The LAMMPS package implements an impressive set of po-
tentials with GPU acceleration [8,9,10], but TIP4P is not among them. Nevertheless, we
rely on the developments from the LAMMPS package on the implementation of accel-
erated potentials. Our project uses the Geryon library, which at the preprocessing level
allows you to compile single code for CUDA and OpenCL backends (Figure 2), and the
library includes the class hierarchy for molecular dynamics programming. Adapting the
algorithm to use the accelerators raises some issues critical to performance [11,12], such
as organizing data access [13]. Some of them are solved by the library.

We also rely on the KSPACE module for calculating long-ranged interaction [7].
This allows us to calculate only the short-range part of the Coulomb interaction, and to
get the full value running the PPPM/TIP4P solver from the model script.

3. Implementation

To determine the coordinates of the virtual charge, it is necessary at each step to know the
position of all three particles of the molecule. In this project, we relied on the source code
of the potential lj/cut/tip4p/long to implement a “suffix-accurate-compatible” accelerated
version. This code works by presume that in the input, the atoms that make up the water
molecules are ordered, and each oxygen is followed by two corresponding hydrogen:

O - H - H - O - H - H - ... - O - H - H

Such ordering is stored in particle identifiers, but during the program’s operation
this data is reordered in memory unpredictably, and another numbering is used when
traversing the local arrays in LAMMPS. To find information about all the particles that

V. Nikolskiy and V. Stegailov / GPU Acceleration of Four-Site Water Models in LAMMPS 567

make up the molecule, a separate code is intended. This code essentially uses the internal
methods LAMMPS Atom->map and Domain->closest image to correctly compose
the molecular structure based on global particle identifiers. Porting these methods to the
GPU is not entirely natural, so the first idea was to keep for execution on the CPU part
of the code that accesses these functions.

Another feature of the lj/cut/tip4p/long is that it relies heavily on the use of Newtons
third law, i.e. when calculating the interaction between i and j particles, the calculation
result is saved for both participants in the interaction. It is unacceptable for GPU kernels,
since an arbitrary thread cannot change data related to any arbitrary particle without
expensive synchronization. It is necessary to organize the calculations so that only a
certain group of threads is working on calculation of the force acting on the i-th particle.
This requires a change in the algorithm and careful handling of some extreme cases.

3.1. Redundant Computation Approach

The information about the molecules is collected using the methods of the LAMMPS
classes Atom->map and Domain->closest image. It is possible to prepare molecular
structure on the CPU and transfer it to the GPU. The problem is that information on
virtual charges is needed not only for local, but also for j atoms. Therefore, the CPU has
to make not so few calculations. Data on the molecular structure is stored as follows:
atom numbers and a flag are stored in the hneingh array, extended to 4 number align-
ment if necessary. The coordinates of the virtual charge are calculated immediately and
transferred to the m array, although this part of the algorithm can also be separated and
transferred to the GPU.

hneigh[iO] = {iH1, iH2, 0, flag}

hneigh[iH1] = hneigh[iH2] = {iO, 0, 0, flag}

m[iO] = m[iH1] = m[iH2] = {x, y, z, flag}

When the data is prepared and transferred, the GPU kernel starts. Here we use the
Redundant Computation Approach (RCA) [10]. It is expected that in our case this is
not the fastest approach for naive implementation, but it is useful as a basis for further
complication. Each molecule contains a single virtual charge m, but the force acting on
it is distributed between all three real atoms [14]. Thus, in order to obtain the total sum of
forces without writing data to the memory of the j-th atoms, it is possible to calculate two
components of the electrostatic force for each ith atom: direct interaction and distributed
(Figure 3). Thus, the effect on the virtual charge m of each j-th atom have to be calculated
not once, but three times, but the purpose of this is that there will be no need for any
additional synchronization.

The code for this approach was not as simple as originally expected. The correct cal-
culation of interactions required introducing a rather large number of additional checks
and conditions into the kernel. Overall performance is not worth the effort of porting to
the GPU. But this code can be easily improved.

3.2. Reduced Redundant Computation Approach

It was decided to port all the calculations to the GPU and use additional memory order of
O(n) to reduce the number of redundant calculations. All particles and their neighbors

V. Nikolskiy and V. Stegailov / GPU Acceleration of Four-Site Water Models in LAMMPS568

Hi

m

Hj

Fdirect Fm

Fpartitioned

Figure 3. We consider the electrostatic force of hydrogen j on hydrogen i as part of a water molecule in the
TIP4P model. It consists of two components: direct action, calculated as the usual Coulomb interaction, and
indirect, through a virtual charge. Indirect action is calculated as the Coulomb interaction of hydrogen j with a
virtual charge m, and then the distribution of this force.

are considered on the GPU. In the first step, the atoms that make up the molecule are
detected, and then the coordinate of the virtual charge is calculated and stored. These
procedures are carried out only once for each molecule, two other atoms read the infor-
mation that is already stored. Then the force calculation is made: for hydrogen, a direct
effect on it, and for oxygen, the effect on the displaced charge is calculated. For oxygen,
this value is stored in a separate array.

The final part of the calculation is placed in a separate GPU-kernel, since these cal-
culations should not begin before the first kernel is done for all particles and all molecular
structures and preliminary force values are determined. In this part of the code, the forces
acting on a displaced charge, calculated and stored in the first kernel, are distributed
between the three atoms of the molecule.

Special cases that require separate processing complicate the calculation. For some
local hydrogens, “ghost” oxygen may be related (Figure 4). So the contribution values
will not be naturally calculated and saved for the second kernel for them since the use
of Newtons third law is turned off in the GPU calculation and reverse synchronization
(especially between the steps of calculating pairwise interaction) is not possible. These
particles are processed according to the principle of redundant calculations, which was
described in the Section 3.1: in the first kernel, a molecular structure is compiled for
such hydrogens and the force acting on the displaced charge is calculated. It is necessary
to increase the radius of consideration of electrostatic interactions (the radius of cutting
of the force itself remains the same) to make it work correctly, and the effect of hydrogen
on the oxygen of its own molecule also requires accurate accounting.

4. Results

4.1. Verification

For verification, we used the tried approach based on three criteria [15]. Conservation of
full energy helps to find the first errors — it is a basic, but sensitive criterion. Since we
have a reference calculation based on LAMMPS, it is convenient to use the congruence

V. Nikolskiy and V. Stegailov / GPU Acceleration of Four-Site Water Models in LAMMPS 569

Local atoms

Ghost atoms

Figure 4. Light-gray area outlines the domain where the local atoms are found. It includes the shadowed area
where oxygens can be found as “ghost atoms” for the corresponding hydrogens since they are not local. But
that area is a small fraction of the total for typical cases.

of potential energy (Figure 6) as the second criterion, which is a function of the coordi-
nates of all particles in the system and is also calculated simultaneously with forces in
our code. The third criterion comes from the stochastic properties of the MD calcula-
tion [16]. The average displacement of the coordinates and particle velocities (Figure 5)
in our simulation compared to the reference one should be equal to the machine accuracy
in the first steps, then an exponential increase of the error is observed, followed up to
reaching a plateau. Hopping coordinate differences on Figure 5 are likely to be artifacts
of processing periodic boundary conditions.

4.2. Performance

We used two platforms for testing:

1. 8 core Intel Xeon E5-2620v4 with GPU Nvidia GeForce GTX 1070 (Pascal)
2. 8 core AMD Epyc 7251 with GPU Nvidia Titan V (Volta)

The code for the GPU can be compiled in any of three modes: single, double and mixed
precision, while the calculations on the CPU are always performed in double precision.
We use mixed precision for the GTX 1070, as the Nvidia GeForce GPUs are significantly
slower with double-precision arithmetics [17]. Mixed precision is acceptable for many
molecular dynamics calculations. At the same time, on a newer or server-level GPUs
that fully supports double precision, our algorithm shows good acceleration in double
precision, as it can be seen in the example of the Titan V (Volta generation).

Figure 7 shows the time profile for different parts of the task when executing the
program on the CPU and on the GPU on our hardware. The number of atoms in the sim-
ulation is 32000. In the tests, all processor cores were loaded using MPI parallelization.

V. Nikolskiy and V. Stegailov / GPU Acceleration of Four-Site Water Models in LAMMPS570

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

 0 1 2 3 4 5 6 7

Time, ps

<|dr|>
<|dv|>

Figure 5. The normalized averaged deviations of coordinates and velocities on two trajectories calculated
from identical initial conditions with LAMMPS lj/cut/tip4p/long and with our GPU-accelerated code. The
exponential dependence with a further saturation regime is in agreement with the stochastic theory of molecular
dynamics.

-8450

-8400

-8350

-8300

-8250

-8200

 0 500 1000 1500 2000 2500 3000 3500

P
o
te

n
ti
a
l
e
n
e
rg

y

Time, fs

GPU-accelerated
CPU (Original LAMMPS lj/cut/tip4p/long)

Figure 6. The potential energy calculated by our GPU code is equal to the potential energy calculated by the
original LAMMPS lj/cut/tip4p/long at the beginning of the calculation, but the difference grows rapidly after
passing the time of dynamic memory of the system.

It can be clearly seen that the time for calculating pairwise interactions is significantly
reduced: almost seven times on the GTX 1070 and almost six times on the Titan V. It
worth noting, that when one turn on the GPU module in the program, Neigh (the time it
takes to build neighbor lists) approximately doubles. This is due to the disabling of the
use of Newtons third law - thus the neighbors lists are doubled in size, considering each
particle as i and as j, which explains the increase in time. The increased communication
time at the stand with Titan V using double precision remains unclear. We conducted a

V. Nikolskiy and V. Stegailov / GPU Acceleration of Four-Site Water Models in LAMMPS 571

Figure 7. Time profile for 5 setups: 1) GPU algorithm in mixed precision on Nidia GTX 1070; 2) LAMMPS
CPU algorithm on 8 core CPU Intel Xeon E5-2620v4; 3) GPU algorithm in mixed precision on Nidia Titan V;
4) GPU algorithm in double precision on Nidia Titan V; 5) LAMMPS CPU algorithm on 8 core CPU AMD
Epyc 7251. Lower time is better. The code was implemented as “Pair” part of timestep breakdown. The number
of atoms is 32000.

smaller number of experiments with Titan V, and, perhaps, it’s work can be improved by
proper tuning for the new architecture. We expect that the use of GPUs leads to better
energy-efficiency [18]. Energy consumption is also affected by tuning.

5. Conclusion

An algorithm was developed and the corresponding code (available on GitHub [19])
was written for GPU-acceleration of the TIP4P water model as a part of the popular
LAMMPS package. In this work, two solutions to this problem are described: with the
execution of part of the algorithm on the CPU and the completely GPU-computed kernel.
Verification of calculations is performed with both CUDA and OpenCL backends, it
proves that we implemented the desired model with the machine precision. The second
approach shows the overall acceleration about 55% compared to a fully loaded server
processor, and the calculation of interactions is accelerated by almost six times. Future
plans include refinement of the code and comprehensive testing of the stability.

Acknowledgment

The study was funded by RFBR according to the research project No. 18-37-00487 and
supported within the framework of the Basic Research Program at the National Research
University Higher School of Economics (HSE) and within the framework of a subsidy by
the Russian Academic Excellence Project 5-100. Work has been partially supported by

V. Nikolskiy and V. Stegailov / GPU Acceleration of Four-Site Water Models in LAMMPS572

the grant of the President of Russian Federation for support of leading scientific schools
grant NSh-5922.2018.8.

References

[1] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, “Comparison of simple
potential functions for simulating liquid water,” The Journal of Chemical Physics, vol. 79, no. 2, pp. 926–
935, 1983.

[2] J. L. F. Abascal and C. Vega, “A general purpose model for the condensed phases of water: Tip4p/2005,”
The Journal of Chemical Physics, vol. 123, no. 23, p. 234505, 2005.

[3] J. L. F. Abascal, E. Sanz, R. Garca Fernndez, and C. Vega, “A potential model for the study of ices and
amorphous water: Tip4p/ice,” The Journal of Chemical Physics, vol. 122, no. 23, p. 234511, 2005.

[4] N. D. Kondratyuk, G. E. Norman, and V. V. Stegailov, “Quantum nuclear effects in water using centroid
molecular dynamics,” Journal of Physics: Conference Series, vol. 946, p. 012109, jan 2018.

[5] M. J. Abraham, T. Murtola, R. Schulz, S. Pll, J. C. Smith, B. Hess, and E. Lindahl, “GROMACS: High
performance molecular simulations through multi-level parallelism from laptops to supercomputers,”
SoftwareX, vol. 1-2, pp. 19 – 25, 2015.

[6] P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A. Beauchamp, L.-P. Wang, A. C.
Simmonett, M. P. Harrigan, C. D. Stern, R. P. Wiewiora, B. R. Brooks, and V. S. Pande, “OpenMM
7: Rapid development of high performance algorithms for molecular dynamics,” PLOS Computational
Biology, vol. 13, pp. 1–17, 07 2017.

[7] S. J. Plimpton, R. Pollock, and M. Stevens, “Particle-mesh Ewald and rRESPA for parallel molecular
dynamics simulations,” in PPSC, 1997.

[8] W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington, “Implementing molecular dynamics on
hybrid high performance computers short range forces,” Computer Physics Communications, vol. 182,
no. 4, pp. 898 – 911, 2011.

[9] W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N. Tharrington, “Implementing molecular dynam-
ics on hybrid high performance computers particleparticle particle-mesh,” Computer Physics Commu-
nications, vol. 183, no. 3, pp. 449 – 459, 2012.

[10] W. M. Brown and M. Yamada, “Implementing molecular dynamics on hybrid high performance
computersthree-body potentials,” Computer Physics Communications, vol. 184, no. 12, pp. 2785 – 2793,
2013.

[11] K. Halbiniak, R. Wyrzykowski, L. Szustak, and T. Olas, “Assessment of offload-based programming en-
vironments for hybrid cpumic platforms in numerical modeling of solidification,” Simulation Modelling
Practice and Theory, vol. 87, pp. 48 – 72, 2018.

[12] B. Glinsky, I. Kulikov, I. Chernykh, D. Weins, A. Snytnikov, V. Nenashev, A. Andreev, V. Egunov, and
E. Kharkov, The Co-design of Astrophysical Code for Massively Parallel Supercomputers, pp. 342–353.
Cham: Springer International Publishing, 2016.

[13] K. Rojek and R. Wyrzykowski, “Performance modeling of 3D MPDATA simulations on GPU cluster,”
The Journal of Supercomputing, vol. 73, pp. 664–675, Feb 2017.

[14] K. A. Feenstra, B. Hess, and H. J. C. Berendsen, “Improving efficiency of large time-scale molecular
dynamics simulations of hydrogen-rich systems,” Journal of Computational Chemistry, vol. 20, no. 8,
pp. 786–798, 1999.

[15] V. Nikolskii and V. Stegailov, “Domain-decomposition parallelization for molecular dynamics algorithm
with short-ranged potentials on Epiphany architecture,” Lobachevskii Journal of Mathematics, vol. 39,
pp. 1228–1238, Nov 2018.

[16] G. E. Norman and V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method,”
Mathematical Models and Computer Simulations, vol. 5, no. 4, pp. 305–333, 2013.

[17] V. P. Nikolskiy, V. V. Stegailov, and V. S. Vecher, “Efficiency of the Tegra K1 and X1 systems-on-chip
for classical molecular dynamics,” in 2016 International Conference on High Performance Computing
Simulation (HPCS), pp. 682–689, July 2016.

[18] F. Mantovani and E. Calore, “Performance and power analysis of hpc workloads on heterogeneous
multi-node clusters,” Journal of Low Power Electronics and Applications, vol. 8, no. 2, 2018.

[19] https://github.com/Vsevak/lammps

V. Nikolskiy and V. Stegailov / GPU Acceleration of Four-Site Water Models in LAMMPS 573

https://github.com/Vsevak/lammps

