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Abstract.
Large scale parallel applications have evolved beyond the tipping

point where there are compelling reasons to analyze, visualize and other-
wise process output data from scientific simulations in situ rather than
writing data to filesystems for post-processing. This modern approach
to in situ integration is served by recently developed technologies such as
Ascent, which is purpose-built to transparently integrate runtime anal-
ysis and visualization into many different types of scientific domains.
The TAU Performance System (TAU ) is a comprehensive suite of tools
that have been developed to measure the performance of large scale
parallel libraries and applications. TAU is widely-adopted and available
on leading-edge HPC platforms, but has traditionally relied on post-
processing steps to visualize and understand application performance.
In this paper, we describe the integration of Ascent and TAU for two
complementary purposes: Analyzing Ascent performance as it serves the
visualization needs of scientific applications, and visualizing TAU per-
formance data at runtime. We demonstrate the immediate benefits of
this in situ integration, reducing the time to insight while presenting
performance data in a perspective familiar to the application scientist.
In the future, the integration of TAU’s performance observations will
enable Ascent to reconfigure its behavior at runtime in order to consis-
tently stay within user-defined performance constraints while processing
visualizations for complex and dynamic HPC applications.
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1. Introduction

Parallel applications developed for large-scale, high-performance computing
(HPC) continue to increase in sophistication and complexity. To a great extent,
this is driven by the advances in computational modeling of scientific and en-
gineering phenomena that will demand the next-generation hardware technolo-
gies fueling the HPC evolution. The ability of applications to harness the greater
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computational resources of HPC systems will deliver results of finer precision,
higher resolution, and more significant predictive power. The challenge, of course,
is to develop applications that can maximize the performance potential of present
and future HPC platforms. This represents the flip side of the sophistication
and complexity problem. Applications will need advanced parallel programming,
language, runtime system, and communication interface technologies to produce
programs that can utilize the heterogeneous many-core processors, multi-level
memory architecture, and fast interconnect hardware effectively and do so in a
performance portable manner.

The dual nature of what defines HPC application success — advanced sci-
entific outcomes and highly-efficient execution — is reflected in tools created to
further enhance that success, again in the context of HPC sophistication and
complexity. For example, analysis and visualization tools are central to the under-
standing of science and engineering simulation results. The last 30 years has seen
a steady progression from tools generating analysis and visualization products
post hoc to those running in situ with the application [1]. The reasons are conse-
quential of simulation fidelity and HPC scale, making it increasingly intractable
to save and process huge modeling data offline [2]. In a similar manner, the im-
portance of parallel performance measurement, analysis, and visualization tools
is central to understanding and tuning applications on HPC machines. Contem-
poraneous to the transition of in situ analysis and visualization, runtime perfor-
mance data introspection, analytics, and feedback are becoming more relevant in
performance systems. Again, the reasons are due to HPC idiosyncrasies, including
larger performance data size, more factors affecting performance variation, and
non-deterministic performance dynamics as a result of asynchronous execution,
all making post mortem performance methods less productive.

Like brothers from a different mother, we consider in this paper the oppor-
tunities for the inter-operation of a parallel performance system with an in situ
analysis and visualization framework. Interestingly, the shared HPC heritage po-
sitions these tools today in a place that begs for their integration and supports it.
We will demonstrate the merits of the endeavor by focusing on two leading efforts:
the Ascent in situ project [3] and the TAU Performance System R© [4]. Ascent is
being developed by a multi-institution effort funded by the U.S. Department of
Energy (DOE) Exascale Computing Project (ECP) [5] to deliver in situ analy-
sis and visualization technology ECP application teams. TAU provides portable,
robust performance measurement and analysis of HPC applications and systems.

There are three perspectives that we will investigate, the first two of which we
will describe in this paper. One perspective looks at the use of TAU to instrument,
measure, and analyze the Ascent infrastructure. TAU is particularly suited to
observing the execution of large-scale software [6] and can directly be applied to
characterize the performance of Ascent components. Ascent’s performance will
correlate with the application-specific analytics and visualization requirements for
which it is being used. Based on the performance analysis, Ascent developers will
be able to understand inefficiencies and optimize performance for specific usage
scenarios.

Another perspective involves the use of Ascent for application performance
analytics and visualization. Here our interest is to gather and process perfor-
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mance data online (from TAU’s measurement of the application measurement
and systems-level information) and utilize Ascent’s infrastructure to analyze and
visualize the data in situ. Specifically, we program Ascent’s runtime with filters to
interface with TAU performance measurements, application-specific values, and
system information during periods when Ascent is invoked.

It is reasonable to assume that TAU and Ascent will co-exist in HPC plat-
forms and applications. Thus, an outcome in pursuing the two perspectives above
is to validate the cross-leveraging of Ascent and TAU technologies. A third, in-
triguing perspective comes from more tightly-coupled integration of TAU and
Ascent whereby they are being used cooperatively in online tuning and adaptive
control of the application. We envision this taking several forms. For instance,
suppose that the user constrains in situ analytics and visualization to take no
more than 10% of the application’s execution time. TAU could be used to mea-
sure the performance of both the application and Ascent, thereby informing the
Ascent infrastructure when corrective action is necessary.

Another possibility is to develop joint analytics that take into account a com-
bination of performance data, application variables, and other execution state to
guide policies concerning how the application should advance. Innovations tak-
ing place in both Ascent and TAU for supporting application triggers [7], feed-
back mechanisms, and autonomic management make this especially salient for
integration purposes. Furthermore, there are strong motivations to extend As-
cent’s and TAU’s operation to scientific workflows where in situ concerns of com-
putational productivity and performance efficiency involve interactions between
multiple simulation modules and workflow components.

Our plan is to evaluate these perspectives with benchmark applications taken
from the ECP proxy applications project. These include two of the applications
that are part of the Ascent test programs, LULESH and Cloverleaf3D. We ran
our experiments on large-scale HPC machines at DOE national laboratories. The
main research objectives are to investigate effective methods and explore develop-
ment strategies for the integration of two state-of-the-art runtime infrastructures
for HPC, principally Ascent for in situ analytics and visualization and TAU for
parallel performance measurement and analysis.

2. Applied Technologies

2.1. Ascent

Ascent [3] is a library for in situ visualization and analysis. Simulation geometry
and results are passed to Ascent at runtime in order to generate periodic analysis
results without the need to write much larger simulation data to disk for post-
mortem analysis. It differs from other in situ libraries in its focus on “flyweight
processing,” meaning small API, small binary size, small execution overhead,
small memory footprint, and few dependencies on other libraries. Ascent supports
zero-copy in situ (meaning that it can share memory with a simulation code),
and supports parallelism both within a node and across nodes. Its parallelism
within a node comes from incorporating the VTK-m project [8], which focuses on
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delivering portable performance across many-core architectures for visualization
and analysis algorithms. It has been demonstrated good performance on 16,384
cores of the Oak Ridge Titan machine [9], 16,384 GPUs on Lawrence Livermore’s
Summit machine, and 2,048 GPUs on Oak Ridge’s Summit.

2.2. TAU and PerfStubs

The TAU Performance System [4] is a portable profiling and tracing toolkit for
performance analysis of parallel programs written in Fortran, C/C++, Java, and
Python. TAU is capable of gathering performance information through system-
interrupt-based sampling and/or instrumentation of functions, methods, basic
blocks, and statements. The instrumentation can be inserted in the source code
automatically with a TAU specific compiler wrapper based on the Program
Database Toolkit (PDT) [10], dynamically using DyninstAPI [11], at runtime in
the Java Virtual Machine or Python runtime, or manually using the instrumen-
tation API (application programming interface). TAU measurements represent
first-person, per-OS (operating system) thread measurements for all processes in
a distributed application, such as an MPI application. TAU measurements are
collected as profile summaries and/or a full event trace.

While application developers are willing to instrument their source code for
performance measurement or correctness testing, they are frequently reluctant
to add a build dependency for their library or application. The TAU library has
many useful features, however can be complex to configure for a given system,
and has several configuration options that are mutually exclusive and may require
multiple configurations and builds for a given performance experiment. Also, a li-
brary such as Ascent is meant to be integrated into larger simulation applications
and a complex configuration/build process for “optional” features will prevent
adoption of these technologies. Finally, many applications already include some
instrumentation to provide rudimentary performance measurement for the pur-
poses of reporting at the end of execution. For these reasons, we have developed a
simple instrumentation interface library called PerfStubs that attempts to resolve
API symbols at link time (using weak symbol overrides) or at runtime (using the
dynamic library loader). PerfStubs itself is a small library (one source file) with
no additional build dependencies and can quickly be installed on a system.

If the PerfStubs symbols are not defined in the application symbol table at
runtime, the instrumentation API will check to see if the function pointer is de-
fined (not-null) and if not, return – an acceptable amount of negligible overhead. If
the symbols are resolved at the program startup process, function pointers are as-
signed the resolved addresses and the PerfStubs API will “feed” any performance
measurement tool that implements the tool interface. TAU includes the tau exec

script that will preload the TAU shared object libraries and provide the symbol
implementations needed by the perfstubs interface. Other measurement libraries
(e.g. APEX, Score-P, Caliper) could also implement the simple API and be used
with the interface. Because the instrumentation interface is pre-processor macro-
based, it can be entirely removed at compile time if the PerfStubs API is not
desired. In fact, the Ascent library already has implemented its own macro-based
instrumentation, and the PerfStubs API was easily integrated into that code, as
well as into specific places in the Ascent code base, as described in Section 3.
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Figure 1. The application (black line) and Ascent (blue line) execute synchronously, with TAU
performance measurements (red line) possibly enabled. The transition points between them is
an opportunity to link in TAU performance data analysis, including the passing of information
to Ascent in a friendly manner for further processing. Profile snapshots are an example of online
performance data processing.

2.3. Integration Model

The Ascent operational design provides the basis for the strategy we pursued for

TAU integration. Specifically, Ascent is invoked synchronously by the application

at certain places during its execution. Ascent then operates while the application

is halted. Upon completion of its work, Ascent returns to the application and

it continues. This process repeats until the application finishes. Adding TAU to

the mix is straightforward. First, in general, we are interested in performance

measurement of both the application and Ascent. This is enabled through TAU’s

instrumentation and measurement mechanisms. Second, gaining access to perfor-

mance data at runtime is possible with new TAU’s plugin architecture. The ap-

plication/Ascent transition points present an opportunity to look at the current

measurements, run analytics, and pass results to Ascent for further processing.

In essence, the transitions are used as triggers for TAU analysis.

Our integration design is demonstrated in Figure 1. Shown is a sequence of

phases of application execution (black line) followed by Ascent execution (blue

line). The dashed arrows indicate the transition points. The red line indicates

TAU performance measurement taking place during both the application and

Ascent. Dashed gray lines further highlight calls to the TAU plugin (red box)

at the beginning and end of Ascent processing. For example, the plugin could

be capturing a snapshot of the present performance data state, designated as

Pi. These snapshots could be stored for post-mortem analysis and/or processed

online.

Profile snapshots can be used to isolate the application’s performance from

Ascent’s performance. From Figure 1, we can use Pi, Pi+1, and Pi+2 to compute

the performance for the application phase by “subtracting” Pi from Pi+1 for every

event and metric measured. Similarly, we can compute the performance for the

Ascent phase by subtracting Pi+1 from Pi+2. This is similar to the procedure we

implemented in the examples described in Section 3. If the TAU plugin stored the

computed performance for each phase, it is further possible to compare between

phases to detect certain features or changes in performance behavior that might

reflect application dynamics.
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Figure 2. TAU profile data from a representative run of Lulesh integrated with Ascent. MPI and
Lulesh timers have been filtered out for space considerations. Only data from rank 0 is shown.

3. Application Examples

3.1. Measuring Ascent with TAU

The first goal of the Ascent-TAU integration is to measure the Ascent library for
the purpose of performance evaluation and eventually, guided execution based
on performance characteristics (future work). As described in Section 2.2, the
Ascent library includes its own instrumentation macros. It was straightforward to
integrate perfstubs start() and perfstubs stop() API calls into these macro
definitions that are frequently used when Ascent is integrated into a simulation.
In addition, primary entry points to the Ascent library were instrumented, such
as the Ascent() object constructor, open(), close(), publish() and execute()

operations as well as the Flow operation pipeline executed by the execute()

function. A TAU static phase [12] was also defined around the region of code
where the simulation pauses execution in order for Ascent to render simulation
output. Figure 2 shows an example TAU profile measurement of the Ascent library
integrated with the Lulesh application.

3.2. Visualizing TAU data with Ascent

The second goal of the integration is to use the Ascent library to visualize per-
formance data from the application. This can be achieved using different per-
spectives. For example, the application performance data can be rendered as a
collection of stacked bar charts, representing the per-process performance profile
from each of the MPI ranks. Figure 3 (left) shows the performance data from
MPI ranks, represented as stacked bar charts. Each color represents a different
timed region of the application, showing only the top 5 contributors (the rest are
aggregated).

However, a much more interesting perspective is shown when the performance
data is projected in the scientific domain. Figure 3 (right) shows the respective
time spent in the main computational loop for all sub-domains at the end of the
last iteration. What had started as a regular grid has been distorted due to the
nature of the Lagrangian computation. Interestingly, the MPI rank computing
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Figure 3. The figure on the left shows output from Lulesh 2.0.3, running with 8 ranks. Each
stacked bar represents the performance profile of each rank at the end of the 10th iteration. The
other two figures show simulation output from Lulesh 2.0.3 running with 64 MPI ranks, after
iteration 4264. The middle figure shows the energy value at the end of the simulation, the right
figure shows the relative time spent in the main computation loop of the simulation for each
process in the domain, where each process is assigned one of the 4x4x4 (distorted) subdomains.

the region with the largest energy level also spends the least amount of time in
the computation.

3.3. Performance Comparison

To further demonstrate the Ascent-TAU integration, we use an in situ algorithm
used for flow analysis and visualization. Lagrangian analysis is an in situ data
reduction operator used to capture the behavior of time-varying computational
fluid dynamics (CFD) simulations. Lagrangian analysis involves the placement
of particles and the calculation of particle trajectories across the entire spatial
domain. Particle trajectories are calculated using vector fields generated by the
simulation code.

In our study, we consider two Lagrangian analysis techniques which offer dif-
ferent workload characteristics. The first Lagrangian analysis technique, referred
to as LagrangianMPI , is communication-based and requires all processes to syn-
chronize every cycle. This method involves exchanging particles between nodes
as they cross spatial boundaries during the calculation of particle trajectories.
The second Lagrangian analysis technique, referred to as LagrangianBTO, is a
communication-free method. This algorithm chooses to discard particles that exit
the local node’s spatial domain.

Our experiments use a hydrodynamics proxy application Cloverleaf3D and
are run on Summit1 at Oak Ridge National Laboratory. In each test, we use 48
MPI tasks across 8 nodes, with each MPI task using a single GPU for particle
advection. LagrangianMPI uses MPI to exchange particles between ranks every
cycle. For each technique we considered two workloads for number of particles
used: 1.56M and 12.48M. The grid resolution of the Cloverleaf3D simulation is set
to 2323 and we execute 50 cycles each of 0.01 step size. In each case, we save the
particle trajectory locations after 10 cycles, i.e., 5 rounds of I/O over 50 cycles.

1For Summit technical specs, see https://www.olcf.ornl.gov/summit/
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Figure 4. Exclusive and Inclusive time comparisons between MPI and BTO methods. The anal-
ysis shows that the BTO method (red) is faster because it generates less synchronization at
MPI Barrier and is less computationally expensive in the pl1 0 vtkh lagrangian flow step in
analysis.

Lagrangian analysis uses particle advection capabilities from the VTK-m library
and is available for use via Ascent.

Figure 4 shows a performance comparison between the two methods when
simulating the larger number of particles used (12.48M). As can be seen in both
the exclusive (time not including sub-routines/-timers) and inclusive (time includ-
ing sub-routines/-timers) measurements, the LagrangianBTO method is less com-
putationally expensive, and therefore less time consuming. the LagrangianBTO

method is also less I/O intensive, and a majority of the difference is summarized
by the comparison of the time spent in the flow:pl1 0 vtkh lagrangian step of
the processing pipeline.

4. Related Work

Typically, performance data is visualized and represented in the physical and/or
logical context of the hardware and/or software resources used in the simulation.
Data is organized by processes and threads, and visualized with respect to nodes,
network topologies and CPU architectures. Scalasca is a powerful performance
system that has extended support in its Cube 3D analysis [13] to show how per-
formance data is distributed across a parallel execution using a computational
topology base on a cube topology. TAU provides similar capabilities by mapping
performance data to network coordinates captured as metadata [14]. Husain and
Gimenez’s work on Mitos [15] and MemAxes [16] use memory hierarchy and ar-
chitecture metadata to provide the context for performance measurements. Box-
Fish [17] also demonstrated the value of visualizing projections of performance
data from multi-dimensional coordinate systems, providing a hierarchical data
model for combining visualizations and interacting with data.

Huck et al. [18] integrated performance data with simulation output in or-
der to project the performance data into the scientific domain. However, that
technique required post-processing of both the performance and simulation data
and did not allow for in situ processing. Using the Scalable Observation Sys-
tem [19], performance data was aggregated over SOS and queries were executed
to extract performance data and generate VTK output files [20]. Using a similar
approach, fusion simulation performance data was aggregated and exported to
VTK files [21]. The authors of those papers were forced to re-define the physical
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domains in order to map the performance data and/or map the performance data
to physical and/or logical coordinates of the allocation. In contrast, the work
described in this paper has the ability to reuse the scientific domain defined for
visualizing the simulation data. Weber [22] has also visualized performance data
at runtime, albeit in a similar perspective to post-mortem trace visualization.
Sanderson [23] is the closest work related to this paper, in that they visualized
performance data at runtime in the scientific domain.

5. Conclusion and Future Work

In this paper, we have presented the integration between the Ascent in situ vi-
sualization and analysis library and the TAU Performance System. We instru-
mented the Ascent library with an instrumentation coupling library to under-
stand its performance characteristics with TAU, and used the Ascent library to
visualize TAU performance data during runtime of proxy applications. We used
the TAU instrumentation to compare two Lagrangian analysis implementations
on the Summit system. In terms of future work, we believe our approach is very
relevant to nascent cost modeling efforts in the scientific visualization community.
Among these are works to optimize algorithms [24,25], as well as fit in situ algo-
rithms within time and power budgets [26,27,28]. In each of these efforts, the re-
searchers studied performance a priori, and then used the findings to direct their
algorithms. This limits the relevance of their approaches to the cases where they
can perform performance studies, digest results, and calibrate their algorithms.
With performance measurements, this process could be automated, meaning that
researchers could develop algorithms that adapt during runtime and with no a
priori performance studies.
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