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Abstract. Scientific visualization tools are essential for the understanding of phys-
ical simulation, as it gives a visualization aspect of the simulated phenomena. In
the past years, data produced by simulations join the big-data trend. To maintain
a reasonable reaction time of the user’s commands, many scientific tools tend to
introduce parallelism schemes to their software. As the number of cores in any
given architecture increases, the need for software to utilize the architecture is in-
evitable. Thus, GraphiX - a scientific visualization tool parallelized in a shared-
memory fashion via OpenMP version 4.5 was created. We chose Gnuplot as the
graphical utility for GraphiX due to its speed as it is written in C. GraphiX par-
allelism scheme’s work-balance is nearly perfect and scales well both in terms of
memory and amount of cores. We achieved a maximum of 560% speedup with 16
cores while visualizing approx 3 million cells.
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1. Introduction

Scientific visualization tools play an important role in the understanding of simulated
physical data [2], exploring the data produced and debugging the simulation itself. This
data is produced by various scientific simulations and is analyzed by placing the data
in some visual context. Among these scientific simulations are computational fluid dy-
namics, molecular dynamics and so forth. Nowadays, many scientific visualization tools
can be used in a variety of ways to visualize data as heat maps, contours, isosurfaces,
three-dimensional and unstructured meshes. One important aspect these tools must take
into account is how fast the tool can process the user’s command or data and produce a
visual image [3].

As the demand for simulation resolution increases, the amount of data produced by
simulation also increases [4], i.e the data that needs to be processed by the visualization
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tool, combined with the complicated ways to represent the data, leads to long response
time, thus harming the user’s experience. One approach visualization tools may take to
shorten the response time is introducing the distributed-memory parallelism schemes [5]
to the tool, such as done in VisIt [6], ParaView [7], Tecplot [8] and many more.

The distributed-memory model consists of multiple processes with different address
space, that may coordinate in some manner to perform a task. These processing units
may reside on completely different computer nodes using MPI (Message Passing Inter-
face) [9] to communicate with one another. With this approach, data is automatically
read, processed, and if needed rendered, in a distributed manner. Thus, dividing the work-
load and the data between the processing units and decreasing the response time results
in an improvement of the HCI (Human-Computer Interaction).

2. Previous Work

Many current scientific visualization tools ease the work of the scientist. Some of these
visualization tools provide the graphical aspect and it is in the scientists’ duty to write the
data-parsing and plotting methodology. These tools are fast in response time and flexi-
ble in their options (as the scientist has full command on how to plot). However, these
tools are less scalable, even at the presence of multi-core hardware, as they are work in
a serial fashion. For example, MATLAB [10], which is a numerical computing environ-
ment and programming language developed by MathWorks. Among MATLAB’s various
features are multi-dimension plotting, contour generation, histograms, vector fields and
more. However, besides the parallel computing toolbox [11], MATLAB is a serial soft-
ware. In the similar well-known open-source mimic, Matplotlib [12] is a Python plotting
library with a similar syntax to MATLAB’s plotting commands. Matplotlib is capable of
two-dimension plots with different options such as color-maps, histograms and more.
Nevertheless, is still not essentially parallel.

There are many more tools with the same rationale - focusing on providing a fast-
response graphic visualization of data such as Gnuplot [13] , GNU Octave [14] etc. How-
ever, as previously mentioned, these tools require manual parsing of the data, and specif-
ically producing (via command-line or code) the wanted plot. To further ease the job of
the scientist, some scientific visualization tools provide the processing and parsing of
the data, and already include built-in scientific-relevant options such as contours, iso-
surfaces, color-maps, mesh generation and more. In contrary to the previous tools, these
introduced with scalable parallelization schemes to the parsing and rendering stages. For
example, VisIt is an open-source, scalable, interactive, parallel up-to three-dimensional
visualization tool developed by Lawrence Livermore National Laboratory (LLNL). VisIt
supports multiple operating systems such as Unix, Windows and Mac, and multiple sci-
entific data formats. Users can manipulate and change their data by applying different
operators and mathematical expressions on the data, save their results and images and
even produce animations. Moreover, users can use the tool to have a better understanding
of their data and even use it to debug their code. VisIt’s parallelism scheme [15] is based
on the distributed-memory model. The most frequent parallel mode in VisIt is where data
is partitioned and distributed over the different processing units - the MPI tasks. Each
MPI task is responsible for the analysis of the data, i.e on the different operators applied
to the data. Additionally, the MPI tasks are responsible for the rendering of its chunk of
data and the resulting images from each task are composite together. In most of the cases,
the parallelism behind VisIt is in an embarrassingly parallel fashion, meaning there is no
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need for communication between the processing units. However, in cases where the data
needs to be shared among the processing units due to streamlining calculation or vol-
ume rendering, the processing units will coordinate and communicate via the MPI API.
Another scalable, parallel visualization tool that is based on VisIt and extends its paral-
lelization scheme is VisIt-OSPRay [16]. The rationale behind this system is to visualize
hundreds of gigabytes and even terabytes of data efficiently on regular processors (Intel
Xeon [17]) and co-processors (Intel Xeon-Phi [18]). VisIt-OSPRay implements a hybrid
parallelization scheme, that includes both a distributed-memory model (processes) and
a shared-memory model (threads). In the final stage of the visualization - the final im-
age composition, the composition in the same node will be done by using threads thus,
minimizing communication overhead and using the shared memory between the threads
while the composition between different nodes will be done via MPI. A similar tool to
VisIt is ParaView [19]. This tool is an open-source, multi-platform data analysis, parallel
up-to three-dimensional visualization tool developed by Los Alamos National Labora-
tory. ParaView, similarly to VisIt, was developed to visualize both small datasets which
are suited for laptops, personal computers, etc. and large scale datasets that are suited
for HPCs. ParaView was designed in layers: The most basic layer is the visualization
toolkit (VTK), which provides the data representation, algorithms and the connection
between the two. The second layer of ParaView’s design is the parallel extension to the
first layer (VTK). The parallel layer allows the execution of the algorithms on shared and
distributed memory machines. The third layer is the graphical user interface (GUI) itself
which provides the transparency of the visualization and the rendering. ParaView sup-
ports many options such as contours and isosurfaces, vector fields and more. ParaView’s
parallelism scheme [7] is based on the distributed-memory model, and works in the same
work fashion as VisIt. ParaView implements its parallelism scheme the same way VisIt
uses MPI. Each MPI task reads a portion of the data, processes it, and if needed will
render the data in a parallel manner. The communication between the MPI tasks is han-
dled by the internal modules, i.e every algorithm is implemented in a parallel manner and
contains the communication schemes. Figure 1 presents a common way to implement a
visualization tool with MPI.

Graphical
User

Interface
Viewer Parallel Engine

Parallel Engine

Parallel Engine

Database
Server

Local Server

Remote Server

Figure 1. Visualization tool scheme with distributed memory parallelism in ParaView and VisIt.
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3. Problem Formulation

As seen in section 2, the distributed-memory model is a common visualization approach
tools take to enhance the user’s experience. However, the use of distributed computing
and the work-fashion in those tools has some major disadvantages [20]:

• Distributed Computing Overhead: When executing commands on the whole
dataset, the processing units need to communicate and synchronize with one an-
other - a situation that creates communication overhead. Furthermore, executing
a parallel visualization on a Symmetric multiprocessing (SMP) or Non-uniform
memory access (NUMA) architecture leads to unnecessary communication over-
head, as there is no need for such communication as they can all share the same
physical memory and can access it.

• Slow HCI: In many cases when there is a need for immediate visualization, even
of relatively large amount of data [∼ second], the data can actually fit on a single
socket [21] - both in terms of memory and computational power - and thus the
distribution of the domain on many nodes in order to utilize more cores is counter-
effective. Furthermore, the creation of MPI processes even on the same socket is
longer than spawning threads, which can be done in the shared-memory model.
Additionally, initializing the GUI and Viewer results in spawning MPI processes
which of course is time-consuming. However, one can leave the GUI open and
save the initializing time but it is not recommended as it is resource-wasteful.

• Non-Optimized Resource Utilization: As the current distributed visualization
tools use a parallel engine that launches the processes to the nodes throughout all
of the tool usages - regardless of actual service - it also implies that the computa-
tional resources are in many cases idle but still allocated.

However, in the past years, multi-core architectures become more and more com-
mon in desktops, laptops, mobile, etc [22]. The multi-core architecture provides a way
for software developers to introduce parallel schemes such as the shared-memory paral-
lelization [23], thus decreasing the software’s response time and allowing more compli-
cated operations. The shared-memory model consists of processing units that share the
same address space, allowing the processing units to exchange data and communicate
with minimal overhead.

As the number of those cores and the amount of their RAM increase [24], the
need for distributing the data on different processing units decreases. Thus, introducing
shared-memory model parallel schemes can lead to faster response time and optimized
resource management [25]. Regarding scientific visualization, distributed tools were cre-
ated first and foremost for complicated and extreme high-resolution simulations and are
suited for the HPC arena. On the contrary, simplified visualization tools were created for
visualization of lower to medium resolution than the latter and are suited for desktops
computers or single socket of NUMA computers. This distinction is very common in
the sciences work fashion, and as such of great interest to be improved in both cases.
Due to the increased usage of multi-core architectures in all computational architectures
since the year of 2005 [22], the gap between these two types of visualization tools can be
reduced by introducing shared-memory parallel schemes to the tools, and most urgently
to the desktop and single-socket NUMA suited ones. Therefore, we created GraphiX a
Fast HCI SMP scientific visualization tool. Figure 2 illustrates the need for such tool.
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The existing gap between HPC and PC in terms of simulations, PC will usually run small
scale simulations (low dimension) and HPC will run big scale simulation (high resolu-
tion, high dimension), which leads to a need for a tool that can benefit from the com-
mon architecture - multi-core. Thus, suitable for both architectures and bridging the gap
between the two.

Personal Computer

2-16 cores
4-32GB RAM

Serial simulation
Low dimension

Serial Visualization

Cluster, Grid, HPC

32-64 cores per node
64-128GB RAM

Parallel simulation
Multi dimension
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Figure 2. Illustration of the need for GraphiX.

4. GraphiX

GraphiX is a fast HCI-suited scientific visualization tool for both SMP and NUMA up
to three-dimension. GraphiX supports several ways to visualize the data such as vol-
ume mesh representation, color-maps, contours, x-axis/y-axis mirroring, presenting data
related to the mesh, and more.
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GraphiX graphical utility is based on Gnuplot [26]. We chose Gnuplot because it is
open-source and written in C and C++ while MATLAB is a proprietary software and not
open-source. Additionally, MATLAB cannot be parallelized in shared or distributed mem-
ory thus, choosing this tool as the graphical utility is impractical. Although Matplotlib is
open-source and can be parallelized (with threads, not OpenMP) but less effective than
parallelization in C, Gnuplot is more suited for OpenMP.

Gnuplot [13] is an interactive, multi-platform up-to three-dimensional visualization
tool. Unlike VisIt and ParaView, Gnuplot is not parallel in any way and is a command-line
driven visualization tool, rather than GUI driven. Nevertheless, it is a fast visualization
tool written in C/C++ and was created to allow scientists to visualize different functions
and data interactively and non-interactively. It also supports different interactive screen
displays such as Qt, wxWidgets, x11 or system-specific. Users can also direct their plots
to different file types such as pdf, eps, gif, jpeg, LaTeX, svg and more.

GraphiX GUI is written in Python and the heavy computational operations such
as mesh creation, contour line calculations, and color-map interpolations are written in
Cython [25]. Cython is a programming language designed to give C-like performances
while maintaining the simplicity of Python syntax. In cases of large data and many oper-
ations, we used OpenMP under Cython.

Parallelism schemes were introduced to two main modules inside GraphiX. The first
module, as discussed above, is responsible for reading and parsing the initial data (cre-
ating the polygon’s coordinates, contours calculations, etc.), and creating the Gnuplot’s
commands that will later produce the visual image. For the second module, Gnuplot’s
source code was partially introduced with shared-memory parallelism via OpenMP [23],
specifically the source code that creates the polygons (the mesh and color-map) which
is the most time-consuming part as will be discussed in section 5. The rationale behind
introducing Gnuplot with OpenMP is explained in section 3, which is minimizing the
overhead and optimizing the use of the common modern architecture - multi-core pro-
cessing.

GraphiX workflow consists of four main modules: GUI, Controller, File Handler
and Gnuplot communicator along with Gnuplot’s source code. Figure 3 illustrates the
main modules and work-flow.

Graphical
User Interface Controller

Gnuplot
Communicator

Gnuplot
Process

File HandlerResponse

Command

Local Server

Remote Server

Figure 3. GraphiX’s work-flow.

4.1. Graphic User Interface

The Graphic User Interface module handles the user’s requests and interactions. As seen
in figure 4 and in section 4, GraphiX can produce contours, color-maps, axis mirroring,
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along with providing the cell’s physical data when clicked. The GUI is written in Python
with PyQt [27] as the visualization kit. The GUI contains a window (the Viewer) that is
connected automatically to a Gnuplot process. This means that when Gnuplot displays
the plot it is automatically drawn on to the Viewer. Figure 4 presents the GUI part, which
includes all the different options such as contours, skipping to the next plot, showing the
physical data of a cell and more. In figure 5 different simulations are plotted on the GUI,
with Gnuplot as the graphical utility. Among the plots are Sedov-Taylor simulation (blast
wave) mesh presentation and pressure color-map, and Rayleigh-Taylor instability mesh
presentation and density color-map.

Figure 4. Graphix Graphic User Interface.

(a) Sedov-Taylor simulation. (b) Sedov-Taylor density color map.

(c) Rayleigh-Taylor pressure contours. (d) Rayleigh-Taylor pressure color map.

Figure 5. GraphiX visualization on different simulations.

4.2. Controller

The Controller module is the main module that connects all the other modules. The
module stores all the data (coordinates, physical data such as pressure and temperature
and more) of the plot. Additionally, the creation of contour lines, color-map and the
mesh is done in this module. As mentioned, GraphiX is written in Python. Due to this,
operations that require heavy calculations such as contours, mesh and color-map creation
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may lead to long response time (compared to low-level programming languages such as
C). To cope with this problem and speedup this process, these modules were written in
Cython.

When a user executes a command the GUI sends the request to the Controller. The
Controller then executes the appropriate action via the File Handling module. Finally, the
Controller will send the file name, and if needed more data, to Gnuplot’s communicator
(see below 4.4) that will later send the appropriate execution command to Gnuplot.

4.3. File Handling

The File Handling module is the module that handles two main parts. The first part
reads and parses (if needed) the user’s data. The second part creates temporary files (in-
memory file system /tmp/ to maximize the I/O operations) that contain the commands
Gnuplot will later execute. For example, producing a mesh in GraphiX is usually done via
Gnuplot’s polygon objects. To create the appropriate polygon objects the coordinates are
parsed and connected in some manner. Afterward, a temporary file is created where each
line defines a Gnuplot polygon object. Finally, Gnuplot’s load command is executed on
the temporary file and the mesh is presented on the Viewer. Currently GraphiX supports
only the VTK input file format. However, it is possible to extend this part and support
additional formats.

4.4. Gnuplot Communicator and Parallel Source Code

Gnuplot Communicator and Source Code module consists of two separate modules that
are strongly connected. Because Gnuplot is a command-line based visualization tool, the
first module, the communicator, opens a Gnuplot process shell (command-line) and is in
charge of sending the Gnuplot commands such as the load command, the plot command
etc. Furthermore, the module receives messages back from the Gnuplot process. For
example, clicking coordinates that provide the cell physical data.

The second module consists of Gnuplot’s modified OpenMP parallel source code.
It was found that producing color-maps is the most computationally intensive and time-
consuming part in Gnuplot. Producing color-maps is done by creating polygons with
some value that represents its’ color. Gnuplot creates polygons by creating a linked-list
of objects (objects can be polygons, rectangles etc.). Each time a new polygon is cre-
ated it is added in some manner to the linked list. Thus, to speed-up the process of cre-
ating the polygons the function load_file, which in fact creates the linked-list of poly-
gons, was introduced with shared-memory parallelism - OpenMP. As the Gnuplot load
command is executed to produce the color-map, the parallelism scheme was introduced
to the function load_file that parses each line of the file and creates the linked-list of
polygons accordingly. The parallelism scheme is based on dividing the linked-list to the
working threads, i.e each thread that is spawned by the OpenMP run-time environment is
responsible on parsing the specific file line and eventually creating a polygon that is part
of its own private and independent linked-list. Finally, once all the threads finish creat-
ing their linked-lists, the master-thread links them together. In NUMA architectures the
OpenMP run-time environment may execute the threads on processing units (cores) that
reside on different sockets, resulting in more frequent false-sharing [28], thus reducing
the speedup gained. To overcome this [29], thread affinity and placement were included
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in the parallelization schemes using OpenMP 4.5 [30]. The following figure illustrates
the parallelization scheme, given N polygon objects (the yellow rectangle) and K threads
the workload will be:

Obj 0 Obj 1 Obj N
K

Thread 1

Obj N
K +1 Obj N

K +2 Obj 2N
K

Thread 2

Obj
(K−1)N+K

K

Obj
(K−1)N+2K

K
Obj N −1

Thread K

... ...

... ...

Figure 6. Illustration of Gnuplot parallelization scheme.

5. Parallelism and Performances Evaluation

Evaluating GraphiX’s parallelism scheme (or in other words Gnuplot’s modified par-
allel source code) in terms of speed and memory scaling was done by creating a file
that contains many polygon-objects and executing GraphiX color-map command, which
as mentioned is the most time consuming operation (in Gnuplot’s source code it is the
load_file function). First, evaluating GraphiX’s thread-scaling capability was tested with
{1, 2, 4, 8, 16, 32} threads with a 500MByte file which is roughly 3,850,000 polygons.
GraphiX was executed on the NUMA architecture with two different options of a new
OpenMP 4.5 feature, the thread affinity with the options of close and spread. The thread
affinity close option spawns new threads as close as possible to the master thread, thus
utilizing the cache-usage and local memory, while the spread option spreads the threads
across the machine (on different sockets) as much as possible, thus utilizing the memory-
bandwidth. As one can see from figure 7, spawning threads close to the master thread
yields better speedup, as the algorithm behind the creation of the polygons is better uti-
lized with cache-sharing. The parallelism scheme (with close) scales well until 8 cores.
Although there is a slight speedup with 16 threads compared to 8, it was found that 8
threads on the NUMA architecture yield the optimal results in terms of performance per
dollar. It is also notable that nowadays most desktops and laptops have 8 to 16 cores in
a SMP architecture. This further indicates that the parallelism scheme is suited for SMP
architecture as close ensures the threads are created within the same socket. Addition-
ally, the two trends intersect at 32 threads as this is the number of cores on the machine,
thus there is no meaning for close or spread as they perform in the same way. Further-
more, we included the well-known theoretical Amdahl’s law graph to demonstrate that
the speedup of Gnuplot total execution is almost the same, as the function load_file takes
approximately 99% of the total execution time.

To evaluate GraphiX’s memory-scaling capabilities, similarly to evaluating the
thread-scaling capability, GraphiX color-map option was tested with files of sizes

6
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Figure 7. Speedup of the GraphiX color-map creation with 500MByte file compared to serial GraphiX.

100MByte (∼770,000 polygons), 500MByte (∼3,850,000 polygons), 1GByte (∼7,700,000
polygons), 2GByte (∼15,200,000 polygons) and 4GByte (∼30,000,000 polygons).

100 500 1,000 2,000 4,000
0

2

4

6

Size of file (Mbyte)

Sp
ee

du
p

2 OpenMP threads
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Figure 8. Speedup of the GraphiX color-map creation over different file sizes compared to serial GraphiX
execution with thread affinity close.

To evaluate GraphiX workload between threads, it was compiled with Scalasca [31]
- a tool that analyzes and measures a programs runtime behavior. One of the features
in Scalasca is to identify performance bottlenecks - specifically in our case, the work-
balance between the threads - and to verify that there are no bottlenecks in Gnuplot’s
modified source code. As seen in figure 9 on the third column, the execution time of
each thread in the OpenMP region is nearly the same, pointing out that the work-balance
between all 16 threads is the same.
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Figure 9. GraphiX Parallelisem with 16 threads, exhibiting near perfect load-balancing.

6. Conclusions

As the trend of multi-core architectures is getting more and more popular, the introduc-
tion of shared-memory parallelism scheme to software is necessary in order to utilize
this architecture. Scientific visualization tools are no exception to this introduction, thus
GraphiX, a fast two/three dimension visualization tool suited for every multi-core archi-
tecture, was created. The most time-consuming option found in GraphiX was the color-
map, thus OpenMP directives were introduced to the tool. As shown in section 5 the
parallelism scheme’s work-balance is perfect and scales well with both the problem size
and the number of threads, and achieve a speedup of ∼5.6 at peak with 16 cores.
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