
POETS: Distributed Event-Based

Andrew BROWNa,1, Mark VOUSDENa, Alex RASTa, Graeme BRAGGa, David
THOMASb, Jonny BEAUMONTb, Matthew NAYLORc, and Andrey MOKHOVd

a
 Electronics and Computer Science, University of Southampton, UK

bElectrical and Electronic Engineering, Imperial College London, UK
c Computer Laboratory, University of Cambridge, UK

d Electrical and Electronic Engineering, University of Newcastle, UK

Abstract. POETS (Partially Ordered Event Triggered Systems) is a significantly different way of
approaching large, compute intensive problems. The evolution of traditional computer technology has taken
us from simple machines with tiny memory and (by todays standards) glacial clock speeds, to multi-gigabyte
architectures running orders of magnitude faster, but with the same fundamental process at the heart: a
central core doing one thing at a time. Over the past few years, architectures have appeared containing
multiple cores, but exploiting these efficiently in the general case remains a 'holy grail' of computer science.
POETS takes an alternative approach, made possible only today by the proliferation of cheap, small cores
and massive reconfigurable platforms. Rather than program explicitly the behaviour of each core and each
communication between them, as is done in conventional supercomputers, here the programmer defines a set
of relatively small, simple behaviours for the set of cores, and leaves them to get on with it - with the right
behavioural definitions, the system 'self-organises' to produce the desired results.

Keywords. Multicore/manycore systems, Heterogeneous systems, Accelerators

1. Introduction

Moores Law[1]: the number of transistors on a chip doubles every 18 months or so.
Dennard scaling[2]: as transistors get smaller, the power density stays constant, so
dissipated power remains proportional to area. Koomeys Law[3]: the number of
computations per joule of energy dissipated increases in line with Moores Law.

These principles have guided commentary on the computing industry for a long
while. Two are exponentials, (and no exponent is sustainable indefinitely in nature),
and the other runs into trouble in the opposite direction: semiconductor device physics
cannot avoid leakage and quantum effects forever. However, they are all - quite
soundly - based on physical effects, and are the domain of the fabrication engineer.

A parallel problem is the continued absence of any general theory of parallel
computing. There are multiple academic publications on theoretical aspects of various
parallel computing models, but the general problem remains hard. Technology gives us
a new Moores Law: the number of cores on a silicon platform rises exponentially and
starts to push at the boundaries of manageability - a new roadblock, alongside the
power wall, the memory wall, process spread....[7]. In a conventional parallel system,
huge swathes of data are moved around to benefit from the compute capabilities
afforded by multiple processors. Bubbles in pipelines must be filled. Every cycle of

1 Corresponding author: Andrew Brown, Electronics and Computer Science, University of

Southampton, , Hampshire, SO17 1BJ UK; adb@ecs.soton.ac.uk

Computing - Scaling Behaviour

Parallel Computing: Technology Trends
I. Foster et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200076

487

every thread must produce useful data: The Beast must be fed. The choreography of
this dance is controlled - designed - by the software architect, and in the vast majority
of cases the complexity issue is side-stepped by making much of the compute
functionality exact duplicates of some cornerstone behaviour. What cannot be side-
stepped by this technique are the relative costs of communications and compute. As
computation grows in size, so too do the necessary support datastructures, and the
proportion of wallclock spent communicating increases unhelpfully at the expense of
the time spent computing. Fabrication technology is realising exa-scale compute, but
simultaneously exposing the problems intrinsic to exa-scale communication.

Concurrent event-based computing is an approach intended to address
simultaneously the complexity and the communication problems. The foundation work
in this space has been reported previously in this conference series[4] and elsewhere [5-
6,8]. In essence, the idea is that vast numbers of tiny compute units, each with a small
amount of state, interconnected by a narrow but fast (hardware brokered)
communications fabric, carrying information in small, fixed size packets, can provide
far superior performance in terms of cost and power dissipation - and in some cases,
also compute capability. In this paper, we discuss firstly the concept in general terms,
and then provide an outline of a prototype architecture, designed to exploit the idea of
computation based around an unchoreographed non-deterministic 'packet storm'. We
then provide some initial physical scaling measurements derived from two application
areas that have been implemented on the event-based architecture.

2. The concept

Without loss of generality, consider the numerical solution of some physical matrix-
based (discrete grid) problem using an iterative process - Gauss-Seidl or Jacobi, for
example. Note there is no requirement for regularity or any kind of dimensional
planarity. The solution process will consist of some number of embedded loops, or
some kind of traversal sequence, moving over the data points of the grid in some
trajectory2 determined by the programmer. At each point, the local state is updated by a

2 By "solution trajectory", we mean the movement of the overall system state, as

opposed to individual atomic data flows.

Solution trajectory (programmer-defined)
- sequential

New values used as soon
as they are available

Previous
value - no
update yet
available

New value
being

calculated

Only old
values used

(m)

x1

x2

x3

x4

x5

x6

x7

(m+1)

x1

x2

x3

x4

x5

x6

x7

Gauss-Seidl:
(m)

x1

x2

x3

x4

x5

x6

x7

(m+1)

x1

x2

x3

x4

x5

x6

x7

Gauss-Seidl:
(m)

x1

x2

x3

x4

x5

x6

x7

(m+1)

x1

x2

x3

x4

x5

x6

x7

Jacobi
(m)

x1

x2

x3

x4

x5

x6

x7

(m+1)

x1

x2

x3

x4

x5

x6

x7

Jacobi
(m)

x1

x2

x3

x4

x5

x6

x7

(m+1)

x1

x2

x3

x4

x5

x6

x7

Event-driven
(m)

x1

x2

x3

x4

x5

x6

x7

(m+1)

x1

x2

x3

x4

x5

x6

x7

Event-driven
Solution trajectory (non-deterministic)

- massively parallel

Values updated randomly
IN PARALLEL

Figure 1: Gauss-Seidl, Jacobi and event-based relaxation

A. Brown et al. / POETS: Distributed Event-Based Computing – Scaling Behaviour488

function of some set of physically adjacent states, and computation moves on. The
solution trajectory is deterministic, and dictated by the programmer. It is not until the
system reaches some form of numerical equilibrium that we assign physical meaning to
the numerical results. If we have a single thread machine, we may use Gauss-Seidl for
a fast convergence. If we have multiple cores available, we can use Jacobi (over)
relaxation and double-buffer the data, achieving still faster overall performance. The
numerical solution sequence at each grid point converges more slowly than the
comparable trajectory in the Gauss-Seidl regime, because Jacobi is using data that is
less fresh than Gauss-Seidl. However, both these approaches have controlled,
deterministic solution trajectories, and this control is a waste of compute if all we are
interested in is the asymptotic solution. The goal here is to do away with this
component of determinism, which saves communication time, and thereby exploit the
physical parallelism available more efficiently (because we are not paying for control).
Ultimately, this (ideally) gives constant scaling.

Consider an alternative approach: Each grid point - there may be millions - has a
compute unit associated with it. Each compute unit maintains knowledge of its own
state, plus ghosts of its logical neighbours. Leaving aside the starting and stopping
problems (described later), the behaviour of each unit is almost trivial. It does nothing
until it receives notification (a data packet) telling it that one of its logical neighbours
has changed state. On receipt of such a notification, the unit recomputes its own state.
If the state has not changed, the unit returns to quiescence. If it has, the unit
asynchronously broadcasts this fact to its logical neighbours (unacknowledged data-
push). It is easy to see that once this process starts, a packet storm will develop quite
quickly, as each unit continually re-evaluates its own state and broadcasts the change.
Some packets will be delayed: the design intention is that the wallclock cost of
computing a state update is small, but it cannot be zero, and it certainly cannot be relied
upon to be uniform over the system. The notion of simulated time across the compute
fabric cannot be defined in any meaningful way whatsoever. How can we achieve
useful compute in these circumstances? Some units will be computing with 'stale' data,
but we don't mind, because 'fresher' values will be along in short (wallclock) order. We
have wasted a (trivial) amount of compute, but this is the price for not having to impose
(and pay for) high-level data choreography. The solution trajectory is non-deterministic,
but has no physical meaning anyway in any compute regime; only the asymptotic
numerical solution is stable and physically meaningful. This state of affairs obviously
depends on the numerical properties of the equation set; some are wildly unstable and
unsuitable for this technique. At present, we have a loose formalism for deciding if a
technique is suitable: if any change of state caused by a packet arrival unconditionally
results in the decrease of (some numerical definition of) energy, then the process will
terminate. This is not an all-embracing criterion, and further study is needed. However,
the size of the application space for which this approach is useful is large and growing.

Event-based processing is not a new concept; space constraints preclude a useful
bibliography. What is timely is the ability of technology - now - to provide us with
sufficient numbers of processing units that the architecture can be made to usefully fit
the problem, rather than the other way around.

3. A prototype architecture

Event-based computing is appropriate for systems that can be decomposed into a
discrete mesh, albeit one with sometimes millions of nodes. Many important

A. Brown et al. / POETS: Distributed Event-Based Computing – Scaling Behaviour 489

engineering problems[4] fall into this category. POETS introduces a system based on
linking an event-based abstract problem definition to an event-based physical compute
platform. From the perspective of abstract application definition, a problem consists of
an arbitrary graph of devices. A device captures the behaviour of a vertex in the
discrete distributed model of the physical system (it could be a point on a wire-mesh
model of a thermal system, or a single CFD point). From the perspective of abstract
compute, the system consists of a large number (O(millions)) of extremely small, cheap
compute units. These are interconnected by a fixed, fast packet-based communication
infrastructure. The packets are small (64 bytes) and entirely hardware-mediated. There
is no MPI-like software message layer. The arbitrary application graph is mapped onto
the fixed hardware graph by initialisation software (called the Orchestrator), and
thereafter device can talk to logical neighbour devices logically transparently via
hardware. Central points of this system:
� It is computationally asynchronous: there is no central 'overseer' clock.
� The state memory is distributed throughout the physical system, and devices
have no visibility of any memory other than that which is local to them.
� Communication is via short, hardware brokered packets. Packet transits are
non-deterministic (once launched, the sender loses visibility of the packet, and until it
physically arrives, the receiver has no visibility or knowledge of the impending arrival.
Packets can take an unpredictable amount of time to arrive, and in extremis it is
possible for the communication stream to be non-transitive.
By far the most significant aspect of the system lies in the way packets are
communicated. In any packet-based communications system with finite internal
buffering, if material is injected into the infrastructure faster than it is removed,
something must give: either the communications system must refuse to accept further
packet injections, or packets must be dropped. In POETS, packet launch is proscribed
until and unless the hardware can guarantee (at least part of) the route is open. Whilst
this does not solve the problem of local congestion, it moves it to the point at which it
can be most responsibly addressed: the sending component. The sender can

� Abandon the send attempt.
� Repeat the attempt at some future (real) time.
� Modify the packet and try again.

Although (ultimately) guaranteeing data delivery, it is easy to see how this can
contribute to the data shear that can lead to non-transitivity.

3.1 The hardware platform

The underlying system platform consists of a six-layer hierarchy - see figure 2 - not
dissimilar to the GPGPU stack.
At the highest level, a POETS system consists of a set of physical boxes. Each box
contains a mothership (an X86 conventional machine) and a set of boards. A board
hosts a DE5 development system of 6 FPGAs Every subsequent layer in the system is
synthesized on the FPGA, and so can easily be modified. The FPGA contains a fixed
(inasmuch as anything is fixed on an FPGA) graph of mailboxes and ports. The latter
connect the cross-board mailboxes The former contains a number of slots (currently 4)
that play host to a dynamic stream of 64 byte packets.
Each mailbox is connected (register mapped) to a synthesized RISC V core (250MHz),
which is itself hyperthreaded. The current system (recall everything is synthesized)
uses 32 bits to address the threads, limiting the maximum thread count to 4G [9].

A. Brown et al. / POETS: Distributed Event-Based Computing – Scaling Behaviour490

3.2 The software stack

The computational problem, from the perspective of the domain-specific user, is of an
arbitrary graph of application devices. The user defines the application graph in
terms of named vertices (devices), each device presenting a set of numbered pins, and
each pin may be connected to an arbitrary set of pins on other devices (and itself, if
need be). The user may also define a supervisor. This is a kind of uber-device, the
design intent of which is to oversee and facilitate command, control and data
exfiltration. Figure 3 illustrates this. The important point here is that the mapping of
devices to threads is decided by configuration software (the Orchestrator). Each
mothership contains an instance of the supervisor (so the number of supervisor
instances is dictated by the hardware). The mapping of supervisor instance to device
subset is controlled by the Orchestrator. The supervisor behaviour must be defined by
the user in the absence of hard knowledge of which device subset it will be overseeing
- although the supervisor can always interrogate the device graph and find out.

3.3 Executing an application

What, then, constitutes the definition of an application graph? The application
programmer defines the POETS graphs as two components: the graph topology and the
device behaviour. The intent (hope?) is that the emergent behaviour of these
components will produce the desired result - refer to the non-deterministic solution
trajectory outlined in the previous section.
Graph topology is defined conventionally as a set of named, typed device instances
with numbered (typed) pins, plus a set of pin-to-pin connections. Pins may only
connect to pins of identical type.
Device behaviour is defined by a set of handlers. A hardware thread may play host to a
number of (logical) devices (nominally 1024, but this figure is largely arbitrary).
Multiple devices per thread represents an area of local temporal sequentialisation in the
overall dataflow, so prima facie is to be avoided. Resident on each thread is a software
skeleton (called the softswitch) which is effectively a spinner, interrogating the

mailboxes attached to its host core
and forwarding packets to the target
device. (All the devices mapped to a
specific thread share a hardware (32-
bit) address. 1024 devices/thread
gives a theoretical hard total system
size of 4T devices.)
Each device contains a small state
space (further subdivided into static
properties and mutable state). Any
incoming packets to a device are
passed to the handler (invoked by the
softswitch): the precise behaviour is
domain-specific and user defined (the
programmer embeds fragments of C
into the device handler definitions),
but in general the device handler - as
a consequence of the incident packet -

Set of supervisors, each
connected to a set of devices

Orchestrator

Arbitrary
application-

specific graph

Box

Orchestrator
controls
mapping

Board

Mailbox

Core

Thread

POETS

S

Dev

Dev

6

64

4

64

?

Set of supervisors, each
connected to a set of devices

Orchestrator

Arbitrary
application-

specific graph

Box

Orchestrator
controls
mapping

Board

Mailbox

Core

Thread

POETS

S

Dev

Dev

6

64

4

64

?

Figure 2: The POETS hardware stack

A. Brown et al. / POETS: Distributed Event-Based Computing – Scaling Behaviour 491

may (optionally) change the internal device state and/or emit packets of its own to its
(logical) device neighbours and/or supervisor.
Note that the user (or any external source) may inject packets into the device graph via
the Orchestrator - (MPI) - supervisor path.
The Orchestrator is an asynchronous, heterogeneous MPI universe, resident on the set
of motherships (plus any other processors connected to the MPI backbone). The
Orchestrator controls the configuration of the system. Within its own datastructures, it
contains
� A model of the available POETS hardware platform (vertex capacities,
capabilities and connectivity).
� A model of the (abstract) application graph (devices, pins and types, device
and supervisor behaviours).
It is responsible for
� Mapping the device graph to the thread set/graph (this single phase
encapsulates the most numerically intensive functionality of the Orchestrator, and
draws heavily from the world of IC placement, assignment and routing).
� Labeling the logical devices with a hardware address.
� Assembling the code fragments describing device behaviour and the device
state space definitions with the softswitch skeleton, cross-compiling and linking the
composite source with the low-level RISC-V library to produce the binary code (to be
executed on the RISC-V threads), and downloading these binaries to the target cores.
Further details of note:
� The RISC-V has a Harvard architecture, and so the data space memory maps
produced by the Orchestrator are obviously thread unique (and thus a function of the
device:thread mapping), but the instruction space in each core is shared by all the
threads on that core. This is not as restrictive as it might appear - in intended use, the
vast majority of the devices will be of very few types, so the Orchestrator can ensure
that all the devices on a core are of the same type without undue stress on the mapping
penalty function. (This issue draws from the openMP GPU thread affinity problem).
� The Orchestrator part of the MPI universe is itself multi-threaded, and so can
spin off the cross-compilers in a set of conventional X86 threads.

Figure 3: Supervisors and devices

A. Brown et al. / POETS: Distributed Event-Based Computing – Scaling Behaviour492

4. Performance: scaling behaviour

Two example application domains are presented here: solving the heat equation, and an
example from computational chemistry.

4.1 The heat equation
The heat equation (section 2)

2

2

x
uD

t
u

�
�

�
�
� may be canonically discretised to give us

� �)(
1

)()(
12

)()1(2 n
i

n
i

n
i

i

n
i

n
i uuu

x
tDuu ��

� ��
�
�

�� . A steady state solution of this equation has the

temperature of each grid point with mutable state (temperature) as an average of the
temperatures of its logical neighbours. (Time varying forcing heat sources necessitate
the introduction of thermal capacities which complicate the point unnecessarily here.)

4.1.1 Knowing when to stop

Solving the equation numerically is an iterative process. In a conventional computing
environment, some limit function looks to establish if the overall or average change in
temperature value per iteration step has fallen below some pre-defined value; once this
situation is detected, the system is deemed to have converged. In a packet-storm based
system, this notion is less well defined, as individual packet latencies may vary wildly,
and the time taken to notify the outside world of a putative convergence can be many
times larger than an individual packet lifetime. Here we compromise:
Like the conventional approach, we ignore temperature changes below a pre-defined
value, so the system eventually stops sending packets. However, the individual devices
have no knowledge that this has occurred as they have no notion of time. We introduce
the idea of a heartbeat: a software-implemented idle detection method that is fully
defined by the application writer in the handlers that they provide. (We use the term
"heartbeat" because there is no clock-like regularity implied.)
Heartbeats are a type of packet that is emitted frequently (see below); each device
counts how many heartbeats it has received, the count being reset any time the device
receives a packet from one of its logical neighbours. When this count reaches a pre-
defined limit, the device emits an "end" packet to the supervisor. This packet also
contains the device current temperature, fulfilling the role of data exfiltration. An end
packet can be cancelled at any time prior to all the supervisors flagging finished, should
a device receive any subsequent packets from its logical neighbours.
In our initial implementation, we generate heartbeats asynchronously at the thread level.
Each device has a user-defined OnIdle handler that may be executed by the softswitch
when there is no other work to do (no packets to send or receive). We usurp the "first"
device on each thread to count the number of times this softswitch handler is executed.
When this reaches a pre-defined limit, a heartbeat is sent to each other device on the
same thread, bypassing the mailbox. Two counters are required as an individual device
has no knowledge of any packets received by other devices in the same thread.

4.1.2 Heat equation – performance

Figure 4 shows the wall-clock execution time a series of simulations of n-by-n two-
dimensional heated plates on a POETS system and a single-threaded 3.8 GHz Intel i7

A. Brown et al. / POETS: Distributed Event-Based Computing – Scaling Behaviour 493

machine. On the POETS engine, a device calculates the temperature for a single point
and convergence is detected using Heartbeats as described in 4.1.1. Devices on POETS
are currently mapped to threads naïvely. Near-linear scaling is observed between 6,400
and 78,400 devices (with an anomaly at 16,900 devices). There is a discontinuity
between 78,400 and 96,100 devices where the simulation fails to converge. We
currently have no explanation for this. Near-linear scaling continues between 96,100
and 1,000,000 devices, albeit at a greater wallclock time.

Figure 4: Heat plate simulation performance

4.2 Computational chemistry

The explosion of compute capability over the past decades has had a transformative
effect on what may be achieved, and few fields have benefitted as much as
computational chemistry: by solving the equations of motion of individual atoms and
molecules, the demonstrated emergent behaviour is effectively that of a chemical
reaction, with all the complexity that that implies. We live in interesting times: yes, we
can compute the trajectories of individual atoms, and so simulate real chemical
interactions, but to extract physically meaningful results requires the reaction
trajectories of millions of particles followed over billions of timesteps. Even by the
standards of the compute resources available today, such an undertaking is hugely
expensive, and techniques are constantly being developed to make the undertaking less
costly. Two strategies come together to provide a significant increase in what may be
achieved in this area: Dissipative Particle Dynamics (DPD) and POETS.

4.2.1 Dissipative particle dynamics

Interesting chemistry usually (but not always) involves large organic molecules, where
a carbon backbone folds in complex ways, depending on its surroundings and the
ligands attached to side-chains. Usually, 'interesting' behaviour is a function of some
gross stereochemical attribute of the system, not the detail: there is no point in
following the behaviour of each atom in a -CH3 group, because the relationship

A. Brown et al. / POETS: Distributed Event-Based Computing – Scaling Behaviour494

between the three hydrogens and the central carbon is unlikely to change significantly,
no matter what happens to the rest of the molecule in the large. Without loss of (too
much) generality, then, we can replace the four-atom subsystem with a single pseudo-
particle - call it a bead. This idea of locally replacing relatively inflexible and
internally uninteresting subgroups of atoms can be extended, sometimes cutting down
the number of individual elements in a molecule by half an order of magnitude. As
each individual atom in a bead itself contributes several degrees of freedom to any
simulation, this represents a considerable decrease in the computational load.
The system under simulation usually consists of some number of large, complicated
organic molecules, modeled by a set of beads. The beads are interconnected by
Hookean and angular bonds, (representing chemical bonds), and usually immersed in
some environment (water?) where each water molecule is represented by a single bead.
(For reasons that are beyond the scope of this paper, systems incorporating electric
charge do not analyze well in DPD). The simulation consists of integrating Newtons'
equations of motion for each bead, marching forwards in discrete time steps. The forces
acting on each bead at each time step are relatively simple:
� Some bead-bead repulsive force
� Some dissipative (damping) force
� Some random (thermal) force
Within 'sensible' limits, the gross behaviour of the overall system is quite insensitive to
the exact numerical form of the force-fields.

4.2.2 The compute environment

Clearly this problem is amenable to parallelisation. The traditional supercomputer
approach (using MPI) to this kind of simulation is to tile space with three-dimensional
cuboids (wrapping round the boundaries to give a continuous periodic physical model),
map each cuboid to a compute core, and to give each core responsibility for simulation
of the interactions of the beads within that cuboid. Movement of beads across cuboid
boundaries is handled by means of 'ghost' layers, and the simulation rate (the ratio of
simulated time to wallclock time) is some function of the resources available to the
core, the size of the system under simulation, and the number of beads per core. None
of this is particularly novel, but the ideas map elegantly onto the POETS architecture,
where we can easily and cheaply bring to bear many thousands of individual cores.

4.2.3 Dissipative particle dynamics - performance

Figure 5 below shows the computational cost of a simulation of two immiscible liquids.
There is no termination configuration, the simulation is uninteresting and is simply
allowed to run for the same number of timesteps for each point on the figure. For
comparison, the sequential line is generated on a single thread, single core, 3GHz Intel
i7 machine. The POETS line is generated from a small POETS system, containing
6144 threads. The wallclock cost of the simulation is (almost) flat up to 6144 devices,
showing that the parallelism is (almost) perfect. The slight slope is due to the physical
latency of moving packets about the system - communication costs. At 6144, the
system is forced to start doubling up on the number of devices/thread - see earlier
comments about serialization in the softswitch - and the runtime cost immediately
doubles. Another discontinuity is visible at about 12000 devices, and thereafter the
performance degenerates as network congestion starts to take its toll.

A. Brown et al. / POETS: Distributed Event-Based Computing – Scaling Behaviour 495

5. Final comments

These are small systems (the next system to be built is under construction - this will be
an order of magnitude larger, and will move the inflections in figure 5 to the right
correspondingly). Even though network congestion has an effect on the performance, in
both examples, the system continues to function (section 3). However much traffic is
injected into the communications fabric, the system waits locally until the network is
drained by computation, and processing continues.

Figure 5: POETS DPD performance

References
[1] G.E. Moore, "Cramming more components onto integrated circuits", Electronics, 38 no 8, 1965
[2] R.H. Dennard, F. Gaensslen, H-N. Yu, L. Rideout, E. Bassous, A. LeBlanc, "Design of ion-implanted
MOSFET's with very small physical dimensions" IEEE Journal of Solid State Circuits. SC-9 (5) 1974.
[3] J. Koomey et al "Implications of Historical Trends in the Electrical Efficiency of Computing", IEEE
Annals of the History of Computing, 33 (3): 46-54, doi:10.1109/MAHC.2010.28
[4] A.D. Brown et al, "Distributed event-based computing", International conference on parallel computing,
ParCo'17, Bologna, September 2017.
[5] S.B. Furber et al, "Overview of the SpiNNaker system architecture", IEEE T Computers, 62, no 12, Dec
2013, pp2454-2467, doi 10.1109/TC.2012.142
[6] E. Painkras et al, "SpiNNaker: A 1W 18-core System-on-Chip for Massively-Parallel Neural Network
Simulation", IEEE Journal of solid-state circuits, 48, no 8, pp 1943-1953. doi:10.1109/JSSC.2013.2259038
[7] M. McCool, A.D. Robinson and J Reindeers, Elsevier, Structured Parallel Programming, ISBN 978-0-12-
415993-8
[8] A.D. Brown et al "SpiNNaker: Neuromorphic simulation - quantitative behaviour", IEEE T Multi-Scale
Computing, 4, no 3, July 2018, pp450-462, doi 10.1109/TMSCS.2017.2748122
[9] M.F. Naylor et al "Tinsel: a manythread overlay for FPGA clusters" International Conference on Field
Programmable Logic and Applications (FPL) 9-13 September, 2019.

Acknowledgements

This work was supported by the UK Engineering and Physical Sciences Research Council grant
EP/N031768/1

0.1

1

10

100

1000

10 100 1000 10000 100000
Device count

W
al

lc
lo

ck
 ru

nt
im

e
(s

ec
s)

Reference single-thread
performance

POETS
engine:
 4 boxes

POETS
engine:
 1 box

A. Brown et al. / POETS: Distributed Event-Based Computing – Scaling Behaviour496

