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Abstract. POETS (Partially Ordered Event Triggered Systems) is a significantly different way of 
approaching large, compute intensive problems. The evolution of traditional computer technology has taken 
us from simple machines with tiny memory and (by todays standards) glacial clock speeds, to multi-gigabyte 
architectures running orders of magnitude faster, but with the same fundamental process at the heart: a 
central core doing one thing at a time. Over the past few years, architectures have appeared containing 
multiple cores, but exploiting these efficiently in the general case remains a 'holy grail' of computer science. 
POETS takes an alternative approach, made possible only today by the proliferation of cheap, small cores 
and massive reconfigurable platforms. Rather than program explicitly the behaviour of each core and each 
communication between them, as is done in conventional supercomputers, here the programmer defines a set 
of relatively small, simple behaviours for the set of cores, and leaves them to get on with it - with the right 
behavioural definitions, the system 'self-organises' to produce the desired results. 
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1. Introduction 

Moores Law[1]: the number of transistors on a chip doubles every 18 months or so. 
Dennard scaling[2]: as transistors get smaller, the power density stays constant, so 
dissipated power remains proportional to area. Koomeys Law[3]: the number of 
computations per joule of energy dissipated increases in line with Moores Law. 

These principles have guided commentary on the computing industry for a long 
while. Two are exponentials, (and no exponent is sustainable indefinitely in nature), 
and the other runs into trouble in the opposite direction: semiconductor device physics 
cannot avoid leakage and quantum effects forever. However, they are all - quite 
soundly - based on physical effects, and are the domain of the fabrication engineer. 

A parallel problem is the continued absence of any general theory of parallel 
computing. There are multiple academic publications on theoretical aspects of various 
parallel computing models, but the general problem remains hard. Technology gives us 
a new Moores Law: the number of cores on a silicon platform rises exponentially and 
starts to push at the boundaries of manageability - a new roadblock, alongside the 
power wall, the memory wall, process spread....[7]. In a conventional parallel system, 
huge swathes of data are moved around to benefit from the compute capabilities 
afforded by multiple processors. Bubbles in pipelines must be filled. Every cycle of 
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every thread must produce useful data: The Beast must be fed. The choreography of 
this dance is controlled - designed - by the software architect, and in the vast majority 
of cases the complexity issue is side-stepped by making much of the compute 
functionality exact duplicates of some cornerstone behaviour. What cannot be side-
stepped by this technique are the relative costs of communications and compute. As 
computation grows in size, so too do the necessary support datastructures, and the 
proportion of wallclock spent communicating increases unhelpfully at the expense of 
the time spent computing. Fabrication technology is realising exa-scale compute, but 
simultaneously exposing the problems intrinsic to exa-scale communication. 

Concurrent event-based computing is an approach intended to address 
simultaneously the complexity and the communication problems. The foundation work 
in this space has been reported previously in this conference series[4] and elsewhere [5-
6,8]. In essence, the idea is that vast numbers of tiny compute units, each with a small 
amount of state, interconnected by a narrow but fast (hardware brokered) 
communications fabric, carrying information in small, fixed size packets, can provide 
far superior performance in terms of cost and power dissipation - and in some cases, 
also compute capability. In this paper, we discuss firstly the concept in general terms, 
and then provide an outline of a prototype architecture, designed to exploit the idea of 
computation based around an unchoreographed non-deterministic 'packet storm'. We 
then provide some initial physical scaling measurements derived from two application 
areas that have been implemented on the event-based architecture. 

 
2. The concept 

Without loss of generality, consider the numerical solution of some physical matrix-
based (discrete grid) problem using an iterative process - Gauss-Seidl or Jacobi, for 
example. Note there is no requirement for regularity or any kind of dimensional 
planarity. The solution process will consist of some number of embedded loops, or 
some kind of traversal sequence, moving over the data points of the grid in some 
trajectory2 determined by the programmer. At each point, the local state is updated by a 
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Figure 1: Gauss-Seidl, Jacobi and event-based relaxation 
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function of some set of physically adjacent states, and computation moves on. The 
solution trajectory is deterministic, and dictated by the programmer. It is not until the 
system reaches some form of numerical equilibrium that we assign physical meaning to 
the numerical results. If we have a single thread machine, we may use Gauss-Seidl for 
a fast convergence. If we have multiple cores available, we can use Jacobi (over) 
relaxation and double-buffer the data, achieving still faster overall performance. The 
numerical solution sequence at each grid point converges more slowly than the 
comparable trajectory in the Gauss-Seidl regime, because Jacobi is using data that is 
less fresh than Gauss-Seidl. However, both these approaches have controlled, 
deterministic solution trajectories, and this control is a waste of compute if all we are 
interested in is the asymptotic solution. The goal here is to do away with this 
component of determinism, which saves communication time, and thereby exploit the 
physical parallelism available more efficiently (because we are not paying for control). 
Ultimately, this (ideally) gives constant scaling. 

Consider an alternative approach: Each grid point - there may be millions - has a 
compute unit associated with it. Each compute unit maintains knowledge of its own 
state, plus ghosts of its logical neighbours. Leaving aside the starting and stopping 
problems (described later), the behaviour of each unit is almost trivial. It does nothing 
until it receives notification (a data packet) telling it that one of its logical neighbours 
has changed state. On receipt of such a notification, the unit recomputes its own state. 
If the state has not changed, the unit returns to quiescence. If it has, the unit 
asynchronously broadcasts this fact to its logical neighbours (unacknowledged data-
push). It is easy to see that once this process starts, a packet storm will develop quite 
quickly, as each unit continually re-evaluates its own state and broadcasts the change. 
Some packets will be delayed: the design intention is that the wallclock cost of 
computing a state update is small, but it cannot be zero, and it certainly cannot be relied 
upon to be uniform over the system. The notion of simulated time across the compute 
fabric cannot be defined in any meaningful way whatsoever. How can we achieve 
useful compute in these circumstances? Some units will be computing with 'stale' data, 
but we don't mind, because 'fresher' values will be along in short (wallclock) order. We 
have wasted a (trivial) amount of compute, but this is the price for not having to impose 
(and pay for) high-level data choreography. The solution trajectory is non-deterministic, 
but has no physical meaning anyway in any compute regime; only the asymptotic 
numerical solution is stable and physically meaningful. This state of affairs obviously 
depends on the numerical properties of the equation set; some are wildly unstable and 
unsuitable for this technique. At present, we have a loose formalism for deciding if a 
technique is suitable: if any change of state caused by a packet arrival unconditionally 
results in the decrease of (some numerical definition of) energy, then the process will 
terminate. This is not an all-embracing criterion, and further study is needed. However, 
the size of the application space for which this approach is useful is large and growing. 

Event-based processing is not a new concept; space constraints preclude a useful 
bibliography. What is timely is the ability of technology - now - to provide us with 
sufficient numbers of processing units that the architecture can be made to usefully fit 
the problem, rather than the other way around. 

 
3. A prototype architecture 

Event-based computing is appropriate for systems that can be decomposed into a 
discrete mesh, albeit one with sometimes millions of nodes. Many important 
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engineering problems[4] fall into this category. POETS introduces a system based on 
linking an event-based abstract problem definition to an event-based physical compute 
platform. From the perspective of abstract application definition, a problem consists of 
an arbitrary graph of devices. A device captures the behaviour of a vertex in the 
discrete distributed model of the physical system (it could be a point on a wire-mesh 
model of a thermal system, or a single CFD point). From the perspective of abstract 
compute, the system consists of a large number (O(millions)) of extremely small, cheap 
compute units. These are interconnected by a fixed, fast packet-based communication 
infrastructure. The packets are small (64 bytes) and entirely hardware-mediated. There 
is no MPI-like software message layer. The arbitrary application graph is mapped onto 
the fixed hardware graph by initialisation software (called the Orchestrator), and 
thereafter device can talk to logical neighbour devices logically transparently via 
hardware. Central points of this system: 
� It is computationally asynchronous: there is no central 'overseer' clock. 
� The state memory is distributed throughout the physical system, and devices 
have no visibility of any memory other than that which is local to them. 
� Communication is via short, hardware brokered packets. Packet transits are 
non-deterministic (once launched, the sender loses visibility of the packet, and until it 
physically arrives, the receiver has no visibility or knowledge of the impending arrival. 
Packets can take an unpredictable amount of time to arrive, and in extremis it is 
possible for the communication stream to be non-transitive. 
By far the most significant aspect of the system lies in the way packets are 
communicated. In any packet-based communications system with finite internal 
buffering, if material is injected into the infrastructure faster than it is removed, 
something must give: either the communications system must refuse to accept further 
packet injections, or packets must be dropped. In POETS, packet launch is proscribed 
until and unless the hardware can guarantee (at least part of) the route is open. Whilst 
this does not solve the problem of local congestion, it moves it to the point at which it 
can be most responsibly addressed: the sending component. The sender can 

� Abandon the send attempt. 
� Repeat the attempt at some future (real) time. 
� Modify the packet and try again. 

Although (ultimately) guaranteeing data delivery, it is easy to see how this can 
contribute to the data shear that can lead to non-transitivity. 

 
3.1 The hardware platform 
 
The underlying system platform consists of a six-layer hierarchy - see figure 2 - not 
dissimilar to the GPGPU stack. 
At the highest level, a POETS system consists of a set of physical boxes. Each box 
contains a mothership (an X86 conventional machine) and a set of boards. A board 
hosts a DE5 development system of 6 FPGAs Every subsequent layer in the system is 
synthesized on the FPGA, and so can easily be modified. The FPGA contains a fixed 
(inasmuch as anything is fixed on an FPGA) graph of mailboxes and ports. The latter 
connect the cross-board mailboxes The former contains a number of slots (currently 4) 
that play host to a dynamic stream of 64 byte packets. 
Each mailbox is connected (register mapped) to a synthesized RISC V core (250MHz), 
which is itself hyperthreaded. The current system (recall everything is synthesized) 
uses 32 bits to address the threads, limiting the maximum thread count to 4G [9]. 
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3.2 The software stack 
 
The computational problem, from the perspective of the domain-specific user, is of an 
arbitrary graph of application devices. The user defines the application graph in 
terms of named vertices (devices), each device presenting a set of numbered pins, and 
each pin may be connected to an arbitrary set of pins on other devices (and itself, if 
need be). The user may also define a supervisor. This is a kind of uber-device, the 
design intent of which is to oversee and facilitate command, control and data 
exfiltration. Figure 3 illustrates this. The important point here is that the mapping of 
devices to threads is decided by configuration software (the Orchestrator). Each 
mothership contains an instance of the supervisor (so the number of supervisor 
instances is dictated by the hardware). The mapping of supervisor instance to device 
subset is controlled by the Orchestrator. The supervisor behaviour must be defined by 
the user in the absence of hard knowledge of which device subset it will be overseeing 
- although the supervisor can always interrogate the device graph and find out. 
 
3.3 Executing an application 
 
What, then, constitutes the definition of an application graph? The application 
programmer defines the POETS graphs as two components: the graph topology and the 
device behaviour. The intent (hope?) is that the emergent behaviour of these 
components will produce the desired result - refer to the non-deterministic solution 
trajectory outlined in the previous section. 
Graph topology is defined conventionally as a set of named, typed device instances 
with numbered (typed) pins, plus a set of pin-to-pin connections. Pins may only 
connect to pins of identical type. 
Device behaviour is defined by a set of handlers. A hardware thread may play host to a 
number of (logical) devices (nominally 1024, but this figure is largely arbitrary). 
Multiple devices per thread represents an area of local temporal sequentialisation in the 
overall dataflow, so prima facie is to be avoided. Resident on each thread is a software 
skeleton (called the softswitch) which is effectively a spinner, interrogating the 
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Figure 2: The POETS hardware stack 
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may (optionally) change the internal device state and/or emit packets of its own to its 
(logical) device neighbours and/or supervisor. 
Note that the user (or any external source) may inject packets into the device graph via 
the Orchestrator - (MPI) - supervisor path. 
The Orchestrator is an asynchronous, heterogeneous MPI universe, resident on the set 
of motherships (plus any other processors connected to the MPI backbone). The 
Orchestrator controls the configuration of the system. Within its own datastructures, it 
contains 
� A model of the available POETS hardware platform (vertex capacities, 
capabilities and connectivity). 
� A model of the (abstract) application graph (devices, pins and types, device 
and supervisor behaviours). 
It is responsible for 
� Mapping the device graph to the thread set/graph (this single phase 
encapsulates the most numerically intensive functionality of the Orchestrator, and 
draws heavily from the world of IC placement, assignment and routing). 
� Labeling the logical devices with a hardware address. 
� Assembling the code fragments describing device behaviour and the device 
state space definitions with the softswitch skeleton, cross-compiling and linking the 
composite source with the low-level RISC-V library to produce the binary code (to be 
executed on the RISC-V threads), and downloading these binaries to the target cores. 
Further details of note: 
� The RISC-V has a Harvard architecture, and so the data space memory maps 
produced by the Orchestrator are obviously thread unique (and thus a function of the 
device:thread mapping), but the instruction space in each core is shared by all the 
threads on that core. This is not as restrictive as it might appear - in intended use, the 
vast majority of the devices will be of very few types, so the Orchestrator can ensure 
that all the devices on a core are of the same type without undue stress on the mapping 
penalty function. (This issue draws from the openMP GPU thread affinity problem). 
� The Orchestrator part of the MPI universe is itself multi-threaded, and so can 
spin off the cross-compilers in a set of conventional X86 threads. 

 
 
Figure 3: Supervisors and devices 
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4. Performance: scaling behaviour 
 
Two example application domains are presented here: solving the heat equation, and an 
example from computational chemistry. 
 
4.1 The heat equation 
The heat equation (section 2) 
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temperature of each grid point with mutable state (temperature) as an average of the 
temperatures of its logical neighbours. (Time varying forcing heat sources necessitate 
the introduction of thermal capacities which complicate the point unnecessarily here.) 
 
4.1.1 Knowing when to stop 
 
Solving the equation numerically is an iterative process. In a conventional computing 
environment, some limit function looks to establish if the overall or average change in 
temperature value per iteration step has fallen below some pre-defined value; once this 
situation is detected, the system is deemed to have converged. In a packet-storm based 
system, this notion is less well defined, as individual packet latencies may vary wildly, 
and the time taken to notify the outside world of a putative convergence can be many 
times larger than an individual packet lifetime. Here we compromise: 
Like the conventional approach, we ignore temperature changes below a pre-defined 
value, so the system eventually stops sending packets. However, the individual devices 
have no knowledge that this has occurred as they have no notion of time. We introduce 
the idea of a heartbeat: a software-implemented idle detection method that is fully 
defined by the application writer in the handlers that they provide. (We use the term 
"heartbeat" because there is no clock-like regularity implied.) 
Heartbeats are a type of packet that is emitted frequently (see below); each device 
counts how many heartbeats it has received, the count being reset any time the device 
receives a packet from one of its logical neighbours. When this count reaches a pre-
defined limit, the device emits an "end" packet to the supervisor. This packet also 
contains the device current temperature, fulfilling the role of data exfiltration. An end 
packet can be cancelled at any time prior to all the supervisors flagging finished, should 
a device receive any subsequent packets from its logical neighbours. 
In our initial implementation, we generate heartbeats asynchronously at the thread level. 
Each device has a user-defined OnIdle handler that may be executed by the softswitch 
when there is no other work to do (no packets to send or receive). We usurp the "first" 
device on each thread to count the number of times this softswitch handler is executed. 
When this reaches a pre-defined limit, a heartbeat is sent to each other device on the 
same thread, bypassing the mailbox. Two counters are required as an individual device 
has no knowledge of any packets received by other devices in the same thread. 
 
4.1.2 Heat equation – performance 
 
Figure 4 shows the wall-clock execution time a series of simulations of n-by-n two-
dimensional heated plates on a POETS system and a single-threaded 3.8 GHz Intel i7 
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machine. On the POETS engine, a device calculates the temperature for a single point 
and convergence is detected using Heartbeats as described in 4.1.1. Devices on POETS 
are currently mapped to threads naïvely. Near-linear scaling is observed between 6,400 
and 78,400 devices (with an anomaly at 16,900 devices). There is a discontinuity 
between 78,400 and 96,100 devices where the simulation fails to converge. We 
currently have no explanation for this. Near-linear scaling continues between 96,100 
and 1,000,000 devices, albeit at a greater wallclock time. 
 

Figure 4: Heat plate simulation performance 
 
4.2 Computational chemistry 
 
The explosion of compute capability over the past decades has had a transformative 
effect on what may be achieved, and few fields have benefitted as much as 
computational chemistry: by solving the equations of motion of individual atoms and 
molecules, the demonstrated emergent behaviour is effectively that of a chemical 
reaction, with all the complexity that that implies. We live in interesting times: yes, we 
can compute the trajectories of individual atoms, and so simulate real chemical 
interactions, but to extract physically meaningful results requires the reaction 
trajectories of millions of particles followed over billions of timesteps. Even by the 
standards of the compute resources available today, such an undertaking is hugely 
expensive, and techniques are constantly being developed to make the undertaking less 
costly. Two strategies come together to provide a significant increase in what may be 
achieved in this area: Dissipative Particle Dynamics (DPD) and POETS. 
 
4.2.1 Dissipative particle dynamics 
 
Interesting chemistry usually (but not always) involves large organic molecules, where 
a carbon backbone folds in complex ways, depending on its surroundings and the 
ligands attached to side-chains. Usually, 'interesting' behaviour is a function of some 
gross stereochemical attribute of the system, not the detail: there is no point in 
following the behaviour of each atom in a -CH3 group, because the relationship 
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between the three hydrogens and the central carbon is unlikely to change significantly, 
no matter what happens to the rest of the molecule in the large. Without loss of (too 
much) generality, then, we can replace the four-atom subsystem with a single pseudo-
particle - call it a bead. This idea of locally replacing relatively inflexible and 
internally uninteresting subgroups of atoms can be extended, sometimes cutting down 
the number of individual elements in a molecule by half an order of magnitude. As 
each individual atom in a bead itself contributes several degrees of freedom to any 
simulation, this represents a considerable decrease in the computational load. 
The system under simulation usually consists of some number of large, complicated 
organic molecules, modeled by a set of beads. The beads are interconnected by 
Hookean and angular bonds, (representing chemical bonds), and usually immersed in 
some environment (water?) where each water molecule is represented by a single bead. 
(For reasons that are beyond the scope of this paper, systems incorporating electric 
charge do not analyze well in DPD). The simulation consists of integrating Newtons' 
equations of motion for each bead, marching forwards in discrete time steps. The forces 
acting on each bead at each time step are relatively simple:  
� Some bead-bead repulsive force 
� Some dissipative (damping) force 
� Some random (thermal) force 
Within 'sensible' limits, the gross behaviour of the overall system is quite insensitive to 
the exact numerical form of the force-fields. 
 
4.2.2 The compute environment 
 
Clearly this problem is amenable to parallelisation. The traditional supercomputer 
approach (using MPI) to this kind of simulation is to tile space with three-dimensional 
cuboids (wrapping round the boundaries to give a continuous periodic physical model), 
map each cuboid to a compute core, and to give each core responsibility for simulation 
of the interactions of the beads within that cuboid. Movement of beads across cuboid 
boundaries is handled by means of 'ghost' layers, and the simulation rate (the ratio of 
simulated time to wallclock time) is some function of the resources available to the 
core, the size of the system under simulation, and the number of beads per core. None 
of this is particularly novel, but the ideas map elegantly onto the POETS architecture, 
where we can easily and cheaply bring to bear many thousands of individual cores. 
 
4.2.3 Dissipative particle dynamics - performance 
 
Figure 5 below shows the computational cost of a simulation of two immiscible liquids. 
There is no termination configuration, the simulation is uninteresting and is simply 
allowed to run for the same number of timesteps for each point on the figure. For 
comparison, the sequential line is generated on a single thread, single core, 3GHz Intel 
i7 machine. The POETS line is generated from a small POETS system, containing 
6144 threads. The wallclock cost of the simulation is (almost) flat up to 6144 devices, 
showing that the parallelism is (almost) perfect. The slight slope is due to the physical 
latency of moving packets about the system - communication costs. At 6144, the 
system is forced to start doubling up on the number of devices/thread - see earlier 
comments about serialization in the softswitch - and the runtime cost immediately 
doubles. Another discontinuity is visible at about 12000 devices, and thereafter the 
performance degenerates as network congestion starts to take its toll. 
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5. Final comments 
 
These are small systems (the next system to be built is under construction - this will be 
an order of magnitude larger, and will move the inflections in figure 5 to the right 
correspondingly). Even though network congestion has an effect on the performance, in 
both examples, the system continues to function (section 3). However much traffic is 
injected into the communications fabric, the system waits locally until the network is 
drained by computation, and processing continues. 

Figure 5: POETS DPD performance 
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