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Abstract. We discuss an open source implementation of Backus FP formalism in
C++. Our implementation preserves all the nice formal properties of the original
language. The implementation is fully C++17 compliant and leverages standard
concurrency mechanisms. It provides linear scalability on state-of-the-art shared
memory multi cores. By preserving the possibility to use all the rules of the associ-
ated “algebra of programs” described by Backus more that 40 years ago, the C++
FP implementation is a natural candidate to be used to introduce parallel program-
ming concepts in core parallel computing courses.
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1. Introduction

Backus Turing award lecture [Bac78] dates back in the late 70 but provides different
features that may be very interesting in these days characterized by the pervasive pres-
ence of different kind of parallel devices. Backus designed a programming framework
(FP) aimed at relieving the programmers from the burden of explicitly controlling traffic
through the Von Neumann bottleneck via memory references. Computations in FP are
represented by compositions of functions that may be i) data combiners (just re-shaping
data), ii) data transformers (e.g. arithmetic functions) and iii) higher order functional (an
apply-to-all and an insert functions that represent kind of map and reduce computations).

As an example, trans represents the transpose data combiner: given a sequence of
sequences it returns the sequence of sequences made by the corresponding items in the
original inner sequences. The distr and distl data combiners get a sequence and an object
and return the sequence of sequences made of the items of the original sequence paired
(in a new sequence) with the object. The two variants represent distribution of the right
object into the left sequence and vice-versa. Higher order functions include [f,g], the
higher order function that builds a sequence of two items obtained applying f and g
respectively on the input item, « that is the apply-fo-all higher order function, applying
the function parameter to all items in the input sequence, and finally / that is the insert
higher order function, “summing up” all items in the input sequence by means of the
parameter function (see Fig. 1 for the main FP function definition).

The typical code shown to illustrate FP features is the code implementing matrix
multiplication. In FP data is represented in sequences, enclosed in angle brackets ((...)).
A matrix will be therefore represented as a sequence of sequences (the matrix rows). In
order to provide the matrix multiplication code, first we define the inner products as:
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Higher order fuctions

of:(xr...xn) = (f(x1)... f(xn))
/(X xn) = D Dxy)
[f,8] :x=(f(x),8(x))

Fog:x=flg(x)

Fuctions (data transformers)
binop :< x,y >= x binop y

Data combiners
distl : (a, (x;...x,)) = ({a,x1)...{a,x,))
distr: ((x;...x,),a) = ({(x1,a) ... {(xy,a))
rotl: (x;...x,) = (x2...%n,%1)
rotr : (x1...x,) = (Xp, X1 . Xp—1)
tra(ns: ((< xl..>.x,,><y1 e yn)) = X, p1) - (X, )
P (XX X)) =X

All functions are | preserving. Whenever x is or contains L then f : x = L for any f

Figure 1. Main FP components
IP = (/+) o (ax)otrans

The computation of the inner product applied to a sequence of two sequences repre-
senting the two vectors may be described by the following (rewriting) steps:

(/+)o(ax)otrans: ((1,2,3),(4,2,2)) —
(/+)o(ax):((1,4),(2,2),(3,2)) = (/+) : (1,4,6) — 11

o

Then the matrix multiplication (input is a sequence of two matrices, each represented as
a sequence of sequences (rows)) may be defined as follows:

MM = (aolP) o(a distl)odistro[l,transo?2]
———

compute code data routing code

In the MM code, the right part represents the computation needed to prepare the data
for the actual computation part ((cca/P), that is apply IP on all the sequences build of a
row of the first matrix and a column of the second one, as prepared byu the data routing
code from the initial pair of matrices). Actually, the definition of IP may be used in place
of the IP call in MM, which leads to the expression:

(aa((/+)o(ox)o trans))o (a distl) odistro [1, trans o 2|

compute code data routing code

with an even longer “data routing” part on the right and a correspondingly longer “com-
putational” part on the left.

In his work, Backus stressed the fact FP may be used as an algebra of programs,
with different rules that can be used to transform programs into functionally equivalent,
syntactically different programs. Despite the fact parallel execution of programs was
not considered in the paper, the higher order functions and the data combiners may be
interpreted as parallel operations. Different researchers pointed out that FP programs
naturally express parallel computations (e.g. [WB94,M1]). We claim that the idea of
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separating data combiners from actual computations may be useful to express different
kind of optimizations.

In this paper, we discuss a framework (fpar) providing Backus FP as an embedded
parallel DSL in C++. The implementation leverages the modern features recently in-
cluded in C++ as well as different existing libraries for parallelism support (OpenMP)
and to implement immutable data structures (see Sec. 2.0.3). We will show that programs
written in fpar may be automatically parallelized achieving proper speedups on small
size shared memory multi-cores using standard C++ mechanisms (threads) and state-of-
the-art parallel programming frameworks (OpenMP). In addition, we will discuss how
we may apply known and proven correct program transformations that actually improve
application performance by coarsening parallel computations (map fusion rule) or im-
proving the data combiner usage (zip rules).

The usage of refactoring rules preserving the functional semantics while chang-
ing/improving non functional properties of programs is of great importance. The avail-
ability of such refactoring rules has been proven to be a viable solution to explore alter-
native implementations of parallel applications even before actually starting their cod-
ing, especially in the framework of structured parallel programming [BHD"13,GD18,
MRR12]. The implementation of fpar preserves all the properties of Backus’ FP frame-
work and, in particular, it can be used to show how different refactoring rules may be ap-
plied to simple numerical computations such that the rules improve different kind of non
functional properties (performance, as shown in Sec. 3, as well as data locality or load
balancing, not covered in this paper). Overall this provides the possibility to run simple
exercise in classroom whose complexity is far less than the complexity involved in run-
ning patterned applications such as those developed using different C++ based parallel
programming frameworks [d0RADFG17,Rei07].

Finally, we want to point out an additional argument in favour of the usage of FP,
related to the utilization of data parallel accelerators. FP code exposes the data trans-
formations needed to subsequently execute map and reduce functionals. This can be ex-
ploited while targeting GPU accelerators. In fact the composition of combiners may be
used to optimize data transfers to and from GPU accelerators, and the apply-to-all and
insert functionals naturally define proper and efficient GPU kernels. Despite we do not
discuss explicitly in this paper these aspects, they may contribute to the development of
automatic parallelization of programs targeting both CPU cores (as we demonstrated)
and GPU cores.

The paper contribution can be summarized as follows.

* We introduce a modern C++ implementation of Backus’ FP targeting shared mem-
ory multi-cores via OpenMP and we

* We discuss an experiment parallelizing a simple neural network training code. The
parallelization comes for free after turning classical imperative code into FP code.

* We discuss how a trivial application of some “algebra of programs” transformation
may be used to improve the performance of the original application FP code.

* Finally, we show how decently grained FP computations scale on state-of-the-art
shared memory multicores.
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2. Implementation

fpar is an implementation of Backus FP in C++17. The implementation is provided as
an open source library and available on github®. The library is actually provided as an
header only package as the compiler optimization techniques may greatly benefit from
the simultaneous compilation of both library and business logic (user) code.

2.1. Data types

fpar aims at reproducing the key features of FP as faithful as possible. In particular, data
types are implemented via a single variadic template class Object that encapsulates a
variant type:

template <typename... Ts>
class Object {
private:
variant<monostate, Ts..., flex_vector<Object<Ts...>>> _obj;
public:

template <typename T> Object(const T& obj) : _obj(obj) {}
template <typename T> operator T () const { return get<T>(_obj); }
};

This enables the possibility to express polymorphic objects that can assume values
of one of the types specified in the instance of the template or, recursively, sequences of
such objects. Finally, a further alternative is the empty type L which is represented as
an instance of monostate that is also conveniently denoted as the constant expression
Bottom. The advantage of using this technique is twofold: on one hand the use of variant
enforces type safety [std19], on the other hand the possibility of identifying alternatives
of the possible types as variadic arguments frees the implementation from a fixed set of
available types. However, programmer has to declare the types of the items eventually
appearing in sequences before actually using them. As an example, if we want to have
integers and floating point numbers in a sequence, we must use the following code:

using namespace fpar;
using Number = Object<int, double>;
Sequence<Number> X = {0.0, 42, 1.0, 23.0};

2.2. Functions

All of the basic arithmetic and logic operators and functions to manipulate and access
sequences are implemented. In addition, higher order functions, called functionals, are
also provided. It is worth pointing out that all of them are unary functions that take and
return (constant references to) Object instances. Therefore, an n-ary function takes a
sequence of n objects acting as multiple arguments (e.g., the plus operator takes the
sequence of the two needed operands).

Since the available types are decided by the programmer, all of the functions and
functionals provided by fpar are function templates that take as template parameter the
instantiated Object class. Some of them also have an additional template parameter that
specifies the kind of execution (parallel or sequential). As an example, the following code
defines a function that squares all items in a sequence in parallel:

’https://github.com/alessandrodgr/fpar
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auto square =
apply_to_all<par_exec, Number>([](const Number& x) { return (x*x); });

In this case, an OpenMP parallel for is used to implement the apply_to_all. Par-
allelism degree used in parallel computations of fpar may be fixed through OMP_NUM_
THREADS variable, as usual. If a seq_exec was used as first template parameter of the
apply-to-all, the application of a square function on a sequence would have been per-
formed sequentially. In other cases, such as the insert (foldr) and condition function-
als, the mechanisms used for the parallel evaluation strategy are the ones provided by the
standard library (thread, async, future).

2.3. Immutability

In order to respect the “functionality” of the FP framework, data managed by the fpar
library are implemented using an immutable data structure implementation [Puel7], pro-
vided by the immer library?.

An alternative version does not use immutable data structures requiring a little bit
more attention while coding applications, but providing better performances when ex-
ecuting functionals in par_exec mode. It is worth pointing out fpar pays a penalty in
terms of performance w.r.t. non fpar equivalent code, mainly due to data type boxing that,
besides usual overhead, impairs automatic vectorization opportunities. We are currently
working to overcome this limitation.

However, the usage of immutable data structures, in addition to the const-correctness

enforced by the constant reference parameter passing, gives two main advantages: i) in
many cases it rules out eventual data races that otherwise the programmer should take
care of, and ii) it keeps the semantics of parallelized constructs unchanged.
This last property is a consequence of the fact that functions with no side effects naturally
introduce independence among the tasks executing the constructs in parallel and, since
these constructs are parallelized via embarrassingly parallel algorithms (parallel for) task
independence is a prerequisite for the correctness of the results.

The only case where purity is not enough to guarantee the correctness of the re-
sult is the insert functional (foldr), where also commutativity and associativity of the
reducing function is asked [MRR12].

Finally, the main consequence of keeping unchanged the semantics of these con-
structs is that all of the laws and theorems given by the “algebra of programs” also hold
for parallel programs. Therefore, fpar programs performance can be optimized using two
different, not necessarily disjoint, approaches:

e parallelization of constructs
* simplification of programs via algebraic laws

As an example, the first kind of optimization can be applied to the inner product function
IP presented in Sec. 1, whose fpar implementation is:

auto ip =
(insert<par_exec>(add, Number(0)) *
(apply_to_all<par_exec, Number>(mul) *
trans<Number>)) (x) ;

3https://github.com/arximboldi/immer
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As explained before, the parallelization happens for the insert and apply_to_all
functionals, since their execution flag is set to par_exec. However, in this case we can
further optimize the program by applying, for example, the rule for zip introduction
(a fotrans = zip f):

auto ip =
(insert<par_exec>(add, Number(0)) *
(zip<par_exec, Number>(mul)) (x);

Doing so, the amount of computation along with memory operations is drastically
reduced, resulting in a better performing program equivalent to the original one. Also
notice that in the original code there was a sequential part computing the transposition
of the two input vectors (trans), while the transformed code is fully parallelized, except
for the function composition.

3. Experimental validation

We first discuss an experiment aimed at demonstrating the applicability of the refactor-
ing rules typical of the FP framework and the possibility to achieve notable performance
increases through refactoring. In this experiment, we parallelized a simple Neural Net-
work training code with fpar. The original code is written as a loop iterating steps that
include matrix multiplications, matrix differences and matrix items transformations. The
single iteration can be expressed in FP considering the application of the following steps,
working on different input and temporary data sequences: a matrix multiplication, an o,
a zip4, another «, a second zip, a second matrix multiplication and eventually a final zip.
These phases eventually result in the following excerpt of C++ code:

auto out = (apply_to_all<par_exec, Number>(sigmoid) *
apply_to_all<par_exec, Number>(ip(W))) (X);

auto err = (apply_to_all<par_exec, Number>(sub_op<double, Number>) *
trans<par_exec, Number> *
construct<seq_exec, Number>({constant<Number>(Y), id<Number>})) (out);

auto delta = (apply_to_all<par_exec, Number>(mul_op<double, Number>) *
trans<par_exec, Number> *
construct<seq_exec, Number>({
constant<Number>(err), apply_to_all<par_exec, Number>(sigmoidder)

1)) (out);

auto WDelta = (apply_to_all<par_exec, Number>(ip(delta)) =*
trans<par_exec, Number>) (X);

W = (apply_to_all<par_exec, Number>(add_op<double, Number>) *
trans<par_exec, Number> *
construct<seq_exec, Number>({constant<Number>(W), id<Number>})) (WDelta);

The code computes the same results of the original, C++ only, sequential code and
achieves decent speedups on single socket multi-core systems with 64bit Linux 4.15 and

“the zip combiner may be defined in FP as follows: zip f = (o f) o trans
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2x10” 25x10" T T T T

Original FP —— " Original FP ——
: Transformed FP -+ Transformed FP -+
186107 | Ideal Original FP 1
Ideal Transformed FP ——--

16x107 - 2107 |
14x107 1
12107 |- 1 150107
x10” 4

8x10° |- 1 x10”

Completion fime (usec)
Completion time (usec)

6x10° T 1 +
4’ [ | 5¢10° |

2x10° TTeesIimoag » S 9

0 L L L L L R 0

Parallelism degree Parallelism degree

Figure 2. Original and transformed code 7¢ on a i5 laptop (4 core, 2 way hyper threading) left and on a dual
Xeon(R) CPU E5-2698 v4 server (40 cores, 2 way hyper threading) (right). X axis: parallelism degree, Y axis:
Tc in psecs

g++ 9.0.1. Leveraging on the FP formal background, the application represented by FP
code may be rewritten using different rules of the algebra, namely:

s (af)o(ag)=a(fog) (map fusion)
e q fotrans =zip f (zip intro)
« (zip f)o[agol, aho2] =zip (fogol,ho2]) (zip generalize)

In principle, the transformation in the C++ code may be performed automatically,
may be following an approach such as the one proposed in [GD17] for more generic and
high level parallel pattern applications.

By manually applying the rules mentioned above, we obtain the code listed below
that turns out to compute the correct results (as expected, due to the proven correctness of
the transformation rules used) but also to compute results with better performance w.r.t.
the original code.

auto out =
apply_to_all<par_exec, Number>(
construct<seq_exec, Number>({id<Number>, sigmoidder}) *
sigmoid * ip1(W)
)(X);

auto delta = (zip<par_exec, Number>(sub_and_mul) *
construct<seq_exec, Number>({constant<Number>(Y),
id<Number>})) (out) ;

W = (zip<par_exec, Number>(
add_op<double, Number> *
construct<seq_exec, Number>({select<2, Number>,
ipi1(delta) * select<l, Number>})
) * construct<seq_exec, Number>({
trans<par_exec, Number>,
constant<Number> (W)

M X);

Fig. 2 shows some results we achieved running our FP version of the neural network
training code on different architectures. Fig. 2 (right) shows the completion time (7¢)
with input matrix size 256x256 on a I7 laptop with 4 cores, with 2-way hyper-threading.
Measured and ideal times are shown. Transformed code performs better both in absolute
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Xeon(R) CPU E5-2698v4 server (64x64 vs 128x128) CPU Epyc AMD (64x64 vs 128x128)
x10° T T T T x10° T T T T

T T
Original FP (64x64) —+—
. Transformed FP (64x64)

+ g Original FP (128x128)
o Transformed FP (128x128)

T T
Original FP (64x64) —+—
Transformed FP (64x64)
Original FP (128x128)
Transformed FP (128x128)

-
b
paa

a0’ | 1107 |

Completion time (usec)
Completion time (usec)

x10° | 1x10°

100000 L L L L L L 100000 L L L L L L
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Parallelism degree Parallelism degree

Figure 3. Effect of computational grain: 7¢ relative to different matrix sized (64x64 and 128x128) on a Xeon
PHI KNL (64 cores, 4 way hyper threading) and on an AMD Epyc 7661 (2x32 core, 2-way hyper threading)
original and transformed versions. Physical cores only have been used.

CPU Epyc AMD (Variable grain size) CPU Epyc AMD (Variable input size)
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Figure 4. Speedup of typical FP code (AMD Epyc 7551, 64 cores, 2 way hyper-threading). Effect of variable
business logic weight (left) and input size (right) in the computation of a synthetic FP application. Speedup
computed w.r.t. plain C++17 sequential code.

times and in scalability w.r.t. original FP code. Fig. 2 (left) shows scalability results on
a Xeon E5 v4 server relative to 1024x1024 matrix size, confirming the kind of results
observed on smaller parallelism degrees on the 17 processor. Eventually, Fig. 3 shows
impact of computational grain. The completion times show (log scale on the Y-axis) are
relative to an experiment run on both an Intel Xeon PHI KNL [MMM™17] and an AMD
Epyc 7551 with different input matrix sizes: 256x256 and 1024x1024. In both cases, the
transformed version performs much better than the original one, either stopping scaling
after the original version (256x256 version) or even not stopping improving times with
parallelism degree while the original version actually stops quite early.

The numbers shown here are good when comparing the two different versions of
the code. However, in absolute they demonstrate quite an amount of overhead derived
from the “pure” implementation of FP. As an example, the usage of immutable data
structures—while greatly simplifying the overall parallelism management—introduces a
considerable overhead with respect to the very same computations implemented using
plain std: : vector data type. We therefore run a different set of experiments aimed at
showing strong and weak scaling properties of fpar. Using synthetic applications, we
looked for the typical computational grain needed to go closer to ideal speedups and to
the effect of working on larger and larger data structures. The results are summarized
in Fig. 4. The left plot shows that close to ideal speedup can actually be achieved when
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Figure 5. Weak scalability of typical FP code (AMD Epyc 7551, 64 cores, 2 way hyperthreading). Scaled
speedup computed w.r.t. plain C++17 sequential code.

the grain of the parallel computation (time spent in a single parallel activity) is close
or higher to the milliseconds. This allows to conclude that our FP implementation is
definitely not fine grain but still can achieve decent strong scalability. The right plot
shows speedups achieved when increasing the size of the processed data. Fig. 5 shows
typical results achieved with the synthetic applications in terms of weak scalability.

4. Conclusions

In this paper we briefly discussed a modern open source implementation of Backus’ FP
exploiting pure C++17: fpar. We discussed how fpar implementation preserves all the
nice properties of Backus algebra of programs and how fpar can be used to improve
performance of parallel programs through the application of simple program refactoring
rules from FP. fpar implementation demonstrated fairly good scalability on state-of-the-
art shared multicore architectures. The experiments run with the synthetic applications
also demonstrate that fpar implementation exploits medium to coarse grain parallelism
pretty efficiently on the same state-of-the-art shared memory parallel architectures. Al-
though other modern programming languages include some of the FP features discussed
and exploited in this work, the clean and minimal design of FP supported the efficiency
achieved by fpar. Other functional programming languages (Haskell and Erlang, just to
mention two well know and widely adopted languages) also support parallelism at differ-
ent levels and regularities. Refactoring techniques have also been designed to improve or
introduce parallelism [BLH12]. Some of the advantages of these languages are that FP
programs can be easily expressed via, for example, point-free programming and more-
over, they natively support immutable data structures and purity without the need of ex-
ternal libraries. Therefore, they are probably more optimized than fpar with respect of
these techniques and features that were artificially tuned inside of our C++17 implemen-
tation, as showed in Sec. 2. However the proper usage of these much more sophisticated
languages requires different/more significant effort than the one required to understand
and use fpar, especially for the parallelisation of programs that in our library is achieved
just by setting a flag. Last but not least, the clean and easy to understand implementation
of fpar makes it suitable to be adopted in parallel programming courses to demonstrate
refactoring techniques for parallel programming.
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