Parallel Computing: Technology Trends 441
L Foster et al. (Eds.)

© 2020 The authors and IOS Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC200070

Dynamic Runtime and Energy
Optimization for Power-Capped HPC
Applications

Bo WANG 2, Christian TERBOVEN 2 and Matthias MULLER 2
4IT Center at RWTH Aachen University, Germany

Abstract. Future large-scale high-performance computing clusters will face a
power wall where the peak power draw of these clusters exceeds the maximal
power-supplying capability of the surrounding infrastructure. To use the limited
power budget efficiently, we developed a dynamic strategy to tackle execution time
imbalance issues through power shifting and frequency limitation. By applying this
strategy to NPB OpenMP benchmarks, we succeed in a continuous enforcement
of power draw under a specified power cap. At the same time, execution time is
reduced by up to 12.8% and the energy to solution is reduced by up to 12.3%,
compared to a native power strategy.
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1. Introduction

Large-scale high-performance computing (HPC) clusters face a power wall where their
peak power draw exceeds the power supplying capacity of the surrounding infrastructure
[1]. The power draw of these clusters has to be limited in order to avoid hardware dam-
age. Under this constraint, utilizing the power budget efficiently and minimizing the exe-
cution time of running jobs are required in order to improve the clusters’ job throughput.

Execution of a parallel job suffers frequently from imbalance among parallel tasks.
In this work, a parallel task can be an MPI process or an OpenMP thread. Each task
may reach a global synchronization call, like barrier, with distinct delays. The imbalance
can be caused by inherited load imbalance of the job, but can also be caused by power
capping at runtime.

Due to variations at manufacturing, processors have distinct power efficiencies, de-
fined as the number of watts needed to execute certain operations. Enforcing a power cap
on these processors causes distinct performance loss, like floating-point operation rate
[FLOP/s]. The loss happens because of the different amounts of power need be cut to
remain under the power cap[2]. Therefore, power-capping causes an additional runtime
execution imbalance.

Because of diverse factors causing an execution imbalance, it is difficult to analyze
and handle the imbalance issue before the execution. In this work, we developed a dy-
namic power and frequency management (DPF) method to detect, analyze and handle
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runtime imbalances issue. Applying DPF to NPB OpenMP benchmarks, we achieved up
to 12.8% performance improvement and saved up to 12.3% energy compared to a native
strategy.

The remainder of the paper is structured as follows: in Section 2, we describe related
work briefly. In section 3, we illustrate and analyze execution imbalance issues in detail.
Based upon the imbalance observations, we introduce the DPF method to tackle these
issues in section 4. In the subsequent Section, we evaluate DPF with NPB benchmarks
in comparison with a native management strategy. In the last section, we conclude this
work.

2. Related work

Several large scale clusters are facing a power wall issue and several works had been
contributed to investigate and optimize performance of power-capped applications and
clusters[3][2][4][5][6][7].

Routree et al. [2] observed that power capping causes performance imbalance among
processors of the same model since processors have distinct power efficiencies. This kind
of imbalance causes execution time imbalance of parallel tasks.

The authors of [6] and [7] introduced a static power budgeting method to handle
the imbalance issue. They measured and documented the processors’ power efficiencies.
Then they increased the power budget of less power-efficient hardware to improve the
overall performance. However, the static methods are limited in scalability and usability
since each processor needs to be measured and characterized accordingly.

[4] and [5] introduced dynamic methods to tackle the disadvantages of the static
methods separately. Marathe et al. [5] archived performance optimization through fine-
grained management of power budget, thread concurrency, and core clock rate. Gholkar
et al. [4] improved performance through careful power shifting. Both works require on-
line power and frequency monitoring.

Our DPF implementation differs from the other dynamic methods[4] and [5]. DPF
assumes the power budget for a job is dynamically adjustable at runtime [8]; DPF avoids
hardware monitoring as far as possible; DPF manages hardware with limitations instead
of direct manipulation on power or frequency.

3. Platform and Power Capping

In this section, we present the hardware platform where our measurements were con-
ducted at first. We present power values and performance characteristics of the proces-
sors. In the end, we illustrate scenes of a power-capped cluster where this work con-
tributes to.

3.1. Hardware Platform and Software
Measurements in the following sections were conducted on a computing node which

is chosen randomly from the CLAIX-2016 system at RWTH Aachen university. This
node possesses two processors of Intel Xeon E5-2650 V4. Each processor has 12 cores



B. Wang et al. / Dynamic Runtime and Energy Optimization for Power-Capped HPC Applications 443

with hyper-threading deactivated, attached with 64 GB DRAM. The processors can be
clocked up to 2.5 GHz with activated Turbo Boost.

The thermal designed power (TDP) of each processor is 105 watts while the power
can be throttled down to 53 watts according to the runtime average power limitation
(RAPL) setting[9]. RAPL is a technology introduced by Intel which enables power
measurements. The power values provided by RAPL are well verified in many aspects
[10],[11],[12],[13]. On the other hand, RAPL enables power capping where a user can
specify a power value and a time window. RAPL enforces that the average power draw
of the time window remains under the specified power value, regardless of what kind of
operations are being performed.

RAPL manages power of a processor in three domains, the PKG, PPO and DRAM
domain' [14]. The PKG domain is in charge of power management of core and uncore
area where arithmetic logic units (ALU) and last-level cache are located respectively.
The DRAM domains manages power of DRAM. In this work, we only adjust the PKG
domain since it has a high power draw compared to the DRAM domain. In addition,
power capping the DRAM domain decreases the execution performance seriously since
memory bandwidth is the performance bottleneck for many scientific-technical applica-
tions.

Compared to the per-processor power capping through RAPL, each core of the pro-
cessors can be adjusted independently because of the intergrated dynamic voltrage and
frequency scaling (DVFES), and fully integrated voltage regulator (FIVIR)[15] technolo-
gies. In this work, we limit the maximal frequency using Linux /sys/devices/system/cpu/
cpui/cpufreq/scaling_max_freq interface instead of setting a concrete frequency. Through
the frequency limitation, hardware is allowed to choose a concrete frequency to meet a
power cap automatically and flexibly.

We employ the NPB OpenMP [16] benchmarks of the size C and a home-grown
synthetic benchmark (this benchmark will be introduced in the Section 5.1). The bench-
marks in our measurements always occupy all available cores with parallel tasks, i.e., 24
threads.

3.2. Power Efficiency Variation of Hardware

Due to manufacturing variations, processors of the same product line can have diverse
power efficiencies. We define power efficiency as the power draw of a processor per-
forming certain operations: the higher the power draw, the less efficient the processor is.
Figure 1 illustrates power efficiencies of the two processors of our testbed. The power
draw of each benchmark differs. On processor 0, ft draws more than 90 watts while is
consumes 61 watts in average. In particular, processor 0 is about 10% less power efficient
than processor 1 (processor 0 consumes 8 watts more than processor 1 in average.).

We observed a similar power variation in many other RWTH HPC cluster’s nodes
with different degree of variations.

3.3. Performance Variation under Power Capping

The enforcement of a power cap causes performance degradation, i.e. applications will
perform slowly. We measured relative execution time extension of NPB benchmarks

'The PPO domain is not supported on our platform.
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Figure 1. Power draw of two processors

capped at 53 watts compared to executions at TDP. Measurements were conducted on
sockets one after another. Results are illustrated in Figure 2.

The amount of performance degradation depends on many factors. It depends on
applications’ peak power draw. The higher the peak power is, the more power needs to be
capped and the more performance will be throttled. Since ft has a higher power draw than
is illustrated in Figure 1, ft’s performance degradation is greater than is, as illustrated in
Figure 2.

The degradation also depends on the performed operations by the applications, like
memory-bound or compute-bound operations. bt and sp have a similar peak power draw
in Figure 1, but the performance degradation differs a lot (12% vs. 24% on processor 0)
since the measured L3 cache miss rates of bt and sp are quite different( 2E-4 and 1.2E-3
misses per second).

In particular, the degradation depends on the power efficiency of the underlying
processors. On a power-inefficient processor, more power needs to be capped compared
to on a power-efficient processor. The frequency of the inefficient processor is throttled
greatly and the performance degradation is tendentiously high, as illustrated by Figure 2.
Processor 0 has more performance loss than processor 1 for all benchmarks.

3.4. Dynamic Power Budgeting on a Power-capped Cluster

Because of infrastructure limitations, power supplying can be insufficient for a cluster
running at its peak power draw. On such a cluster, power budgeting methods were de-
veloped [8][17] to accelerate executions as far as possible. The methods schedule power
to jobs dynamically and according to jobs’ states. For an individual job, power budget
varies from time to time. In this context, the DPF method needs to track the jobs’ power
budget and enforces the average power draw under the current budget.
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Figure 2. Relative time extension or performance degradation of executions power capped to 53 watts com-
pared to capped to 105 watts

4. Dynamic Resource Management to Eliminate Imbalance

An execution of a parallel job on a power-capped cluster may suffer from an imbalanced
execution time among parallel tasks. In this section, we justify and present our dynamic
algorithm to tackle the imbalance issue and improve the jobs’ performance.

4.1. Why Dynamic Management?

An imbalanced execution of a job can be caused by many factors. The job may have
inherited load imbalance, i.e. parallel tasks obtain uneven loads. The load imbalance is
individual to an application even to an input dataset.

In addition, the execution imbalance can also be caused by varied performance of
power-capped processors as illustrated is Figure 2. The degree of imbalance is deter-
mined by the processors and the power cap.

Because of individual imbalances and runtime factors, a static analysis that predicts
and handles imbalance before an execution is complex and imprecise. In contrast, a dy-
namic runtime imbalance tracking and handling are more promising. Assuming that a job
consists of iterative executions of parallel regions and the imbalance remains constant
among iterations, we track the imbalance of the previous region, calculate and distribute
resources in a way to eliminate the imbalance for the next iteration. This dynamic algo-
rithm is a light-weight solution since it does not require any prerequisite knowledge of
the hardware or the software.

4.2. Load Imbalance Detection and Elimination
Normally, an HPC application executes one or multiple parallel regions iteratively. A

parallel region is defined as a section of execution between two global synchronization
calls, such as barriers. The entire execution time 7;,, can be calculated as a sum:
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Tapp:ZTr (1)

T, is the execution time of a parallel region r. Under the assumption that synchronization
time is negligible, 7, is determined as

T, = max(T}),Vt € parallel tasks )

namely by the slowest (critical) task.

T,pp can be reduced by accelerating the critical task of each parallel region r through
a high power budget or a high core frequency. Since a power-capped application has a
limited power budget, the required power budget needs to be moved or shifted from other
tasks. If the overall power cap remained and the execution is accelerated, the job’s energy
consumption will be reduced.

4.3. Power Shifting and Frequency Limitation to Minimize Execution Time

We developed a two-level resource management approach, the DPF, to minimize T,
illustrated by a tree in Figure 3. The tree design is constructed according to the avail-
able resource management technologies, RAPL and DVFS. On top of the tree a central
resource manager monitors available power-budget for the job. In the middle, a proces-
sor manager manages its own power draw using RAPL. At the bottom, a core manager
manages its own frequency through DVFS.

The managers are integrated into each parallel task which are bound to physical
cores. In general, the task with ID 0 of a job is the central resource manager. A single
task on each processor manages the processor’s power. Besides, each task is a core freq
manager.

The computation time 77 of a processor within the parallel region r is defined as the
maximum computation time of parallel tasks executing on the processor in Eq. (3).

TP = max(T/),Yj runs on processor p 3)

A critical processor P is the processor with the maximal 7;. Executions on p can be

accelerated through enlarging its power budget PB. The required power enlargement F P
(free power) needs be collected from other sockets through Eq. (4).

FP=Y (SP,if T? < a-T} and PB” > MinPB, Vp € P) “4)

SP is a predefined step power (e.g. one watt). MinPB is the minimal power budget in-
herited in hardware to assure a stable operation. ¢ € (0, 1) is a threshold that determines
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when power can be shifted. & is a sensitive parameter: a high & causes corrupted resource
adjustment frequently due to the tiny runtime deviation; a low & eliminates improvement
potential since the resource rescheduling occurs rarely.

A critical task 7 within a processor is the task with the maximal execution time
T!. 7 should always run without any frequency limitation while the frequency of other
tasks can be limited. In this way, more power will be allocated to the critical task. The
frequency limitation is calculated using Eq. (5):

0, if 7! > TF
Fuew =  Feurrens +1, if Trt <B- 7 5)
Feurrent s otherwise

Here, the frequency setting F' is similar to ACPI P-states [18] where the higher F
is, the lower the actual frequency of the hardware is. 8 is a sensitive scaling parameter
similar to « in Eq. (4). In the first case where 7 > T7?, the frequency is reset to the valid
maximum. In the second case, the tasks’ frequency is limited to a lower level. Otherwise,
the current frequency is retained.

Through an execution, once a parallel regions r is encountered, the central resource
manager checks and updates the job’s current power budget. If the power budget is
changed, the new budget is distributed evenly among processors. Frequency limitation
of each core is reset to the valid maximum. Otherwise, power budget and frequency will
be recalculated for each processor and for each core.

After a parallel region execution, each task stops its execution time. The time values
are collected from task freq managers to the central resource manager. Algorithm 1
illustrate the implementation.

4.4. Implementation and Overhead

We implemented the DPF for common MPI and OpenMP jobs. To eliminate the expen-
diture in recognizing parallel regions, we employ OMPT [19] and PMPI [20] tools for
automatic detection.

Since a parallel region can be small and the resource-scheduling time overhead com-
pared to the execution time can be high, we introduced three techniques to eliminate the
overhead:

e If the execution of an identified region is shorter than 0.01 seconds, no resource
recalculation takes place.

e DPF tracks current resource settings. If the newly-calculated settings are identical
to the current settings, no resource scheduling takes place.

e Hardware setting occurs locally and in parallel. Each task manages its own core
frequency. A single task of each processor enforces the power cap.

In particular, the DPF only tracks time consumption. Monitoring of other hardware
settings, like actual power draw and actual frequency, is unnecessary since it is irrelevant
to calculate settings of the next step. Using this method, monitoring overheads can be
eliminated essentially.
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Algorithm 1: Resource management

1 Function resource_scheduling()
2 if taskID = centralManagerID then
3 L calculate and distribute power budget for each processor;

4 if taskID = processorManagerID then
receive and set power cap;
calculate and distribute freq;

7 set freq;
8 start time measurement;

9 Function time_collection()

10 stop time measurement;

11 send time to processor manager;

12 if taskID = processorManagerID then

13 receive time;

14 calculate processors’ critical time;

15 send processor critical time to the central manager;

16 if taskID = centralManagerID then
17 L receive time;

18 Function job_execution()

19 Parallel

20 call resource_scheduling();
21 doing some operations;

22 call time_collection();

5. Evaluation

At the beginning, we illustrate how power and clock rate are managed for a synthetic
benchmark. Then, we present the overhead introduced by DPF. At the end, we evaluate
energy and execution time reduction through DPF compared to a native strategy with
NPB benchmarks?.

5.1. Dynamic Power and Clock Rate Management

As described in previous sections, the dynamic resource manager should a) enforce the
power draw under a specified power cap continuously, b) react to a changed power lim-
itation quickly and c¢) manage resources to eliminate execution imbalance. We verified
the management process with a synthetic benchmark on the hardware platform.

The synthetic benchmark executes a parallel region in a loop. The iterations are
divided into three phases. In the first phase, power cap for each processor is changed
from 80 watts to 70 watts (from 160 watts to 140 watts for two processors). In the second

2The EP, UA and LU benchmarks are not suitable for the investigation since they only have very short
regions, or a single parallel region or inconsistent execution time.
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Figure 5. Run-time processor frequency monitoring

phase, tasks on processor 1 obtain 25% more load than the others. In the third phase,
load of the two processors is reversed.

During the benchmark execution, we sampled the actual power draw and core fre-
quency at 1 Hz. The results are illustrated in Figure 4 and Figure 5. As expected, the
power draw remains permanently under the configured power cap, except the second af-
ter the cap is throttled from 80 to 70 watts (the measured power amounts to 77 watts).
This violation is due to the interleaving of the sampling and power-adjusting points.

The measured power and frequency of phases 2 and 3 in Figures 4 and 5 illustrate
that the resources are scheduled to eliminate load imbalance. In phase 2, more power is
shifted to processor 1 whose cores are clocked up. In phase 3, power is shifted back to
processor 0 immediately after a new load imbalance is detected.

5.2. Overhead of the Resource Management

Since the time overhead of DPF can be critical for short parallel regions, we evaluate the
overhead with NPB OpenMP benchmarks.
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During the measurements, power was capped to TDP (105 watts) on each processor.
The actual execution is not power capped at all. However, DPF calculates power and
frequency settings continuously and may set the hardware rarely.

We started each benchmark ten times with or without DPF and recorded the execu-
tion time. The overheads calculated as

Ippr

Overhead = —1

NODPF

is illustrated in Figure 6. Tppr and Tyoppr are the execution time with DPF and the
average execution time without DPF, respectively.

The executions with DPF have some deviations up to £2%. Regardless of the de-
viations, the DPF overhead amounts to lower than 2% in the worst case, and in average
lower than 1%.

5.3. Execution Time and Energy Consumption Optimization

We attached DPF to NPB OMP benchmarks of size C for validation. Capping to 55,
60, 65 and 70 watts, we measured execution time and energy consumption. Figure 7
illustrates normalized DPF time and energy compared to the values of a native strategy.
The native strategy sets equal and constant power caps among processors.

For most benchmarks the achieved execution time improvements are higher than
the observable deviation illustrated in Figure 6, except the cg at 65 watts and sp at 70
watts. The average improvements amount to about 4% for all power caps. In some cases,
executions can be accelerated by up to 12.8%. At the same time, energy can be saved by
up to 12.31%.

6. Conclusion

Because of the high power draw of an HPC cluster, the power needs be capped to avoid
hardware damage in the future. However, power capping causes performance variation
among processors due to their distinct power efficiencies.

In this work, we introduced a dynamic method, the DPF, that schedules power and
limits frequencies to tackle the performance variation issue. DPF monitors runtime and
hardware in a light-weight way. It succeeds in remaining the power draw under a speci-
fied power cap. At the same time, it accelerates executions and reduces energy consump-
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tion. For instance, applying DPF on NPB benchmarks executions were accelerated up to
12.8% and the energy consumption was reduced up to 12.3%.
In the future, we will improve the DPF for large-scale executions where hardware

variation is more significant and DPF overheads need be reduced much more.
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